Skip to main content
Log in

Friction and wear behaviors of Ti/Cu/N coatings on titanium alloy surface by DC magnetron sputtering

  • Metallic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ti/Cu/N coatings with different Cu contents were deposited on titanium alloy surface by the DC magnetron sputtering technique. XPS and FESEM were employed to characterize the composition and structure of the coating on the Ti6Al4V substrates. In addition, The adhesion force, friction, and wear properties of the Ti/Cu/N coatings were investigated. The experimental results showed that the coarse particles of the coatings would grow more and the surface roughness increased with the increase of copper content in the coatings; The coatings showed a strong adhesion force; The friction coefficient of the coating of the samples was less than the substrate, reaching 0.19 at least. The wear resistance of the coatings could be improved by optimizing and controlling the relative content of Ti, Cu, N elements on the titanium alloy surface, especially the 10.98 at% contents of the copper. The sample C2 kept the best wear resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geetha M, Singh A K, Asokamani R, et al. Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants-A Review[J]. Prog. Mater. Sci., 2009, 54(3): 397–425

    Article  Google Scholar 

  2. Grupp T M, Meisel H J, Cotton J A, et al. Alternative Bearing Materials for Intervertebral Disc Arthroplasty[J]. Biomaterials, 2010, 31: 523–531

    Article  Google Scholar 

  3. Wang S, Liao Z H, Liu Y H, et al. Different Tribological Behaviors of Titanium Alloys Modified by Thermaloxidation and Spraying Diamond Like Carbon[J]. Surf. Coat. Technol., 2014, 252: 64–73

    Article  Google Scholar 

  4. Thorwarth G, Hammerl C, Kuhn M, et al. Investigation of DLC Synthesized by Plasma Immersion Ion Implantation and Deposition[J]. Surf. Coat. Technol., 2005, 193: 206–212

    Article  Google Scholar 

  5. Krishna D S R, Brama Y L, Sun Y. Thick Rutile Layer on Titanium for Tribological Applications[J]. Tribol. Int., 2007, 40: 329–334

    Article  Google Scholar 

  6. Li J, Sun M, Ma X. Structural Characterization of Titanium Oxide Layers Prepared by Plasma Based ion Implantation with Oxygen on Ti6A14V Alloy[J]. Appl. Surf. Sci., 2006, 252(20): 7503–7508

    Article  Google Scholar 

  7. Sun R L, Lei Y W, Niu W. Laser Clad TiC Reinforced NiCrBSi Composite Coatings on Ti-6Al-4V Alloy Using a CW CO2 Laser[J]. Surf. Coat. Technol., 2009, 203: 1395–1399

    Article  Google Scholar 

  8. Yoon J S, Myung H S, Han J G. A Study on the Synthesis and Microstructure of WC-TiN Superlattice Coating[J]. Surf. Coat. Technol., 2000, 131: 372

    Article  Google Scholar 

  9. Shi Y L, Peng H R, Xie Y, et al. Plasma CVD of Hard Coatings Ti(C-NO) Using Metallo-organic Compound Ti(OC3H7)4[J]. Surf. Coat. Technol., 2000, 132: 26

    Article  Google Scholar 

  10. Endler I, Hohn M, Herrmann M, et al. Aluminum-rich TiAlCN Coatings by Low Pressure CVD[J]. Surf. Coat. Technol., 2010, 205: 1307

    Article  Google Scholar 

  11. Behrens B A, Huskic A. Verschleißreduzierung an Matrizen für das Präzisionsschmieden von Zahnrädern durch Mehrlagenhartstoffbeschichtung (TiN-TiCN-TiC)[J]. Materialwiss. Werkst., 2005, 36: 218

    Article  Google Scholar 

  12. Agudelo L C, Ospina R, Castillo H A, et al. Synthesis of Ti/TiN/TiCN Coatings Grown in Graded Form by Sputtering DC[J]. Phys. Scr., 2008, 131: 014006

    Article  Google Scholar 

  13. Wang S, Liao Z H, Liu Y H, et al. Recent Development on Surface Modification of Artificial Disc Material for Wear Resistance[J]. J. Funct. Mater., 2013, 5(44): 609–613

    Article  Google Scholar 

  14. Zheng J H, Hao J Y, Liu X Q, et al. A Thick TiN/TiCN Multilayer Film by DC Magnetron Sputtering[J]. Surf. Coat. Technol., 2012, 209: 110–116

    Article  Google Scholar 

  15. Wang X Q, Zhao Y H, Yu B H, et al. Deposition, Structure and Hardness of Ti–Cu–N Hard Films Prepared by Pulse Biased Arc Ion Plating[J]. Vacuum., 2011, 86: 415–421

    Article  Google Scholar 

  16. Zhang L, Ma G J, Lin G Q, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms[J]. Nuclear Instruments and Methods in Physics Research B, 2014, 320: 17–21

    Article  Google Scholar 

  17. Zhao Y H, Wang X Q, Xiao J Q, et al. Ti-Cu-N Hard Nanocomposite Films Prepared by Pulse Biased Arc Ion Plating[J]. Appl. Surf. Sci., 2011, 258: 370–376

    Article  Google Scholar 

  18. Myung H S, Lee H M, Shaginyan L R, et al. Microstructure and Mechanical Properties of Cu Doped TiN Superhard Nanocomposite Coatings[J]. Surf. Coat. Technol., 2003, 163–164: 591–596

    Article  Google Scholar 

  19. Wang H F, Shu X F, Guo M Q, et al. Structural, Tribological and Antibacterial Activities of Ti-Cu-N Hard Coatings Prepared by Plasma Surface Alloying Technique[J]. Surf. Coat. Technol., 2013, 235: 235–240

    Article  Google Scholar 

  20. Bao M D, Yu L, Xu X B, et al. Microstructure and Wear Behaviour of Silicon Doped Cr-N Nanocomposite Coatings[J]. Thin Solid Films, 2009, 517: 4938

    Article  Google Scholar 

  21. Hu M, Gao X M, Weng L J, et al. The Microstructure and Improved Mechanical Properties of Ag/Cu Nanoscaled Multilayer Films Deposited by Magnetron Sputtering[J]. Appl. Surf. Sci., 2014, 313: 563–568

    Article  Google Scholar 

  22. Grant D M, Lo W J, Parker K G, et al. Biocompatible and Mechanical Properties of Low Temperature Deposited Quaternary (Ti, Al, V) N Coatings on Ti6Al4V Titanium Alloy Substrates[J]. J. Mater Sci: Mater. Med., 1996, 7: 579–584

    Google Scholar 

  23. Thornton J A. High Rate Thick Film Growth[J]. Annual Review of Materials Science, 1977, 7(1): 239–260

    Article  Google Scholar 

  24. Haseeb A, Celis J P, Roos J R. Fretting Wear of Metallic Multilayer Films[J]. Thin Solid Films, 2003, 444(1): 199–207

    Article  Google Scholar 

Download references

Acknowledgment

The first author gratefully acknowledged the helpful discussions with the research group and colleagues in the School of Mechanical Engineering at Taiyuan University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ailan Fan  (范爱兰).

Additional information

Funded by the Science and Technology Project of Shanxi Province (No.2015031006-2), the NSFC- Shanxi Coal Based Low Carbon Joint Fund Focused on Supporting Project ( No.U1510205) and the New Century Excellent Talents(No.NECT-12-1038)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pang, X., Fan, A. et al. Friction and wear behaviors of Ti/Cu/N coatings on titanium alloy surface by DC magnetron sputtering. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 32, 140–146 (2017). https://doi.org/10.1007/s11595-017-1572-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-017-1572-3

Key words

Navigation