Skip to main content
Log in

Preparation of triethylene glycol maleate and its effect on plasticization of oxidized starch

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A plasticizer triethylene glycol maleate (TEG-MA) was synthesized. The dominated monoester of moderate hydrophobicity with apparent oil-water partition coefficient of 0.042 in the product was confirmed by acid value determination, HPLC and FTIR. Its plasticizing effect on oxidized starch was manifested by crystallization, aging behaviour, moisture absorption, and mechanical performance. X-ray diffraction data showed that the relative crystallinity of the plasticized starch decreased. Both the crystal and the crystallinity of starch films were rarely changed in aging. Moisture absorption relied on the ester content and relative humidity. The elongation at break increased significantly with plasticizer content more than 10% in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tung CC, Ku TS, Lin CA. Study of the Plasticizer Effect and Characterization on Diverse Pseudo-Thermoplastic Starch Biodegradable Films[J]. Polym-Plast Technol., 2011, 50: 320–327

    Article  Google Scholar 

  2. Mali S, Grossmann MVE, García MA, et al. Effects of Controlled Storage on Thermal, Mechanical and Barrier Properties of Plasticized Films from Different Dtarch Sources[J]. J. Food Eng., 2006, 75: 453–460

    Article  Google Scholar 

  3. Cuq B, Gontard N, Cuq JL, et al. Selected Functional Properties of Fish Myofibrillar Protein-based Films as Affected by Hydrophilic Plasticizers[J]. J. Agr. Food Chem., 1997, 45: 622–626

    Article  Google Scholar 

  4. Zhang YC, Han JH. Plasticization of Pea Starch Films with Monosaccharides and Polyols[J]. J. Food Sci., 2006, 71: 253–261

    Article  Google Scholar 

  5. García MA, Martino MN, Zaritzky NE. Microstructural Characterization of Plasticized Starch-based Films[J]. Starch/Stärke, 2000, 52: 118–124

    Article  Google Scholar 

  6. Kim CH, Kim DW, Cho KY. The Influence of PEG Molecular Weight on the Structural Changes of Corn Starch in a Starch/PEG Blend[J]. Polym. Bull., 2009, 63: 91–99

    Article  Google Scholar 

  7. Talja RA, Helén H, Roos YH, et al. Effect of Various Polyols and Polyol Contents on Physical and Mechanical Properties of Potato Starchbased Films[J]. Carbohyd. Polym., 2007, 67: 288–295

    Article  Google Scholar 

  8. Shogren RL, Swanson CL, Thompson R. Extrudates of Cornstarch with Urea and Glycols: Structure/mechanical Property Relations[J]. Starch/ Stärke, 1992, 44: 335–338

    Article  Google Scholar 

  9. Lawton JW. Plasticizers for Zein: Their Effect on Tensile Properties and Water Absorption of Zein Films[J]. Cereal Chem., 2004, 81: 1–5

    Article  Google Scholar 

  10. Appu SP, Kumar De S, Khan MJ. Natural Weather Ageing of Starch/ Polyvinyl Alcohol Blend: Effect of Glycerol Content[J]. J. Polym. Eng., 2013, 33: 257–263

    Google Scholar 

  11. Kaewtatip K, Tanrattanakul V. Structure and Properties of Pregelatinized Cassava Starch/kaolin Composites[J]. Mater. Des., 2012, 37:423–428

    Article  Google Scholar 

  12. Kaewtatip K, Thongmee J. Effect of Kraft Lignin and Esterified Lignin on the Properties of Thermoplastic Starch[J]. Mater. Des., 2013, 49: 701–704

    Article  Google Scholar 

  13. Lourdin D, Coignard L, Bizot H, et al. Influence of Equilibrium Relative Humidity and Plasticizer Concentration on the Water Content and Glass Transition of Starch Materials[J]. Polym., 1997, 38: 5401–5406

    Article  Google Scholar 

  14. O’Brien KL, Selanikio JD, Hecdivert C, et al. Epidemic of Pediatric Deaths from Acute Renal Failure Caused by Diethylene Glycol Poisoning[J]. J. Am. Med. Assoc., 1998, 279: 1175–1180

    Article  Google Scholar 

  15. McKennis J H, Turner RA, Turnbull LB, et al. The Excretion and Metabolism of Triethylene Glycol[J]. Toxicol Appl. Pharmacol., 1962, 4: 411–431

    Article  Google Scholar 

  16. Quackenbos HM. Plasticizers in Vinyl Chloride Resins Migration of Plasticizer [J]. Ind. Eng. Chem., 1954, 46: 1335–1344

    Article  Google Scholar 

  17. Raquez JM, Nabar Y, Srinivasan M, et al. Maleated Thermoplastic Starch by Reactive Extrusion[J]. Carbohyd. Polym., 2008, 74: 159–169

    Article  Google Scholar 

  18. Hablot E, Dewasthale S, Zhao Y, et al. Reactive Extrusion of Glycerylated Starch and Starch-polyester Graft Copolymers[J]. Eur. Polym. J., 2013, 49: 873–881

    Article  Google Scholar 

  19. Iovino R, Zullo R, Rao MA, et al. Biodegradation of Poly (lactic acid)/ starch/coir Biocomposites under Controlled Composting Conditions[J]. Polym. Degrad. Stab., 2008, 93: 147–157

    Article  Google Scholar 

  20. Zeng JB, Jiao L, Li YD, et al. Bio-based Blends of Starch and Poly(butylene succinate) with Improved Miscibility, Mechanical Properties, and Reduced Water Absorption [J]. Carbohyd. Polym., 2011, 83: 762–768

    Article  Google Scholar 

  21. Jarvis CE, Walker JRL. Simultaneous, Rapid, Spectrophotometric Determination of Total Starch, Amylose and Amylopectin[J]. J. Sci. Food Agric., 1993, 63: 53–57

    Article  Google Scholar 

  22. Nyquist RA. Infrared Study of Maleic Anhydride in Solvent Systems[J]. Appl. Spectrosc., 1990, 44: 438–442

    Article  Google Scholar 

  23. Atta AM. Synthesis and Surface Activity of Poly(maleic diester) Surfactants[J]. Polym. Int., 1999, 48: 571–579

    Article  Google Scholar 

  24. Han SY, Qiao JQ, Zhang YY, et al. Determination of n-Octanol/Water Partition Coeficient for DDT-related Compounds by RP-HPLC with a Novel Dual-point Retention Time Correction[J]. Chemosphere, 2011, 83: 131–136

    Article  Google Scholar 

  25. Lopez-Rubio A, Flanagan BM, Gilbert EP, et al. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study[J]. Biopolym., 2008, 89: 761–768

    Article  Google Scholar 

  26. Randal LS, George FF, Frederick CF. X-ray Diffraction Study of Crystal Transformations in Spherulitic Amylose/Lipid Complexes from Jet-cooked Starch[J]. Carbohyd. Polym., 2006, 64: 444–451

    Article  Google Scholar 

  27. Takahashi Y, Kumano T, Nishikawa S. Crystal Structure of B-amylose[J]. Macromol., 2004, 37: 6827–6832

    Article  Google Scholar 

  28. Putseys JA, Lamberts L, Delcour JA. Amylose-inclusion Complexes: Formation, Identity and Physico-chemical Properties[J]. J. Cereal Sci., 2010, 51: 238–247

    Article  Google Scholar 

  29. Tozuka Y, Takeshita A, Nagae A, et al. Specific Inclusion Mode of Guest Compounds in the Amylose Complex Analyzed by Solid State NMR Spectroscopy[J]. Chem. Pharm. Bull., 2006, 54:1097–1101

    Article  Google Scholar 

  30. García MA, Martino MN, Zaritzky NE. Lipid Addition to Improve Barrier Properties of Edible Starch-based Films and Coatings[J]. J. Food Sci., 2000, 65: 941–947

    Article  Google Scholar 

  31. Godbillot L, Dole P, Joly C, et al. Analysis of Water Binding in Starch Plasticized Films[J]. Food Chem., 2006, 96: 380–386

    Article  Google Scholar 

  32. Myllärinen P, Partanen R, Seppälä J, et al. Effect of Glycerol on Behaviour of Amylose and Amylopectin Films[J]. Carbohyd. Polym., 2000, 50: 355–361

    Article  Google Scholar 

  33. Yu JH, Wang JL, Wu X, et al. Effect of Glycerol on Water Vapor Sorption and Mechanical Properties of Starch/Clay Composite Films[J]. Starch/Stärke, 2008, 60: 257–262

    Article  Google Scholar 

  34. Gaudin S, Lourdin D, Forssell PM, et al. Antiplasticization and Oxygen Permeability of Starch-sorbitol Films[J]. Carbohyd. Polym., 2000, 43: 33–37

    Article  Google Scholar 

  35. Takahashi Y, Kumano T, Nishikawa S. Crystal Structure of B-amylose [J]. Macromol., 2004, 37: 6827–6832

    Article  Google Scholar 

  36. Wang JL, Cheng F, Zhu PX. Structure and Properties of Urea-plasticized Starch Films with Different Urea Contents[J]. Carbohyd. Polym., 2014, 101: 1109–1115

    Article  Google Scholar 

  37. McHugh TH, Krochta JM. Sorbitol-vs glycerol-plasticized Whey Protein Edible Films: Integrated Oxygen Permeability and Tensile Property Evaluation[J]. J. Agr. Food Chem., 1994, 42: 841–845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puxin Zhu  (朱谱新).

Additional information

Funded by Science and Technology Support Project of Sichuan Province(Nos. 2014GZ0136 and 2015GZ0176), and National Natural Science Foundation of China(No.51603134)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, F., Lin, Y., Zhao, K. et al. Preparation of triethylene glycol maleate and its effect on plasticization of oxidized starch. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 1167–1173 (2016). https://doi.org/10.1007/s11595-016-1507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1507-4

Keywords

Navigation