Skip to main content
Log in

A facile synthesis of Ag Modified ZnO nanocrystals with enhanced photocatalytic activity

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ag modified ZnO (Ag/ZnO) nanocrystals were prepared by a facile and low temperature wet chemical method. The phase structures, morphologies, and optical properties of the as-prepared samples were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), the Brumauer-Emmett-Teller (BET) surface area, UV-vis diffuse reflectance spectroscopy and photoluminescence (PL) spectra, respectively. The photocatalytic performance of Ag/ZnO with diffent Ag contents was measured with the degradation of methyl orange (MO) at room temperature under UV light irradiation. The experimental results indicated that the well-crystalline ZnO nanopaticles with a size of ca. 4.5 nm exhibited a high photocatalytic activity for the degradation of MO with the apparent rate constant (k) of 1.57 ×10−2 min−1, and the photocatalytic activities of ZnO were further enhanced by modification with silver. When the Ag loading was 3mol%, Ag/ZnO showed the highest photocatalytic acitivity with a k value of 5.452×10−2 min−1, which is 3.5 and 2.5 time more than that of ZnO and commercial P25, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A. Electrochemical Photolysis of Water at a Semiconductor Electrode[J]. Nature, 1972, 238:37–38

    Article  CAS  Google Scholar 

  2. Hoffmann M, Martin S, W Choi, et al. Environmental Applications of Semiconductor Photocatalysis[J]. Chemical Reviews, 1995, 95(1): 69–96

    Article  CAS  Google Scholar 

  3. Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chemical Society Reviews, 2009, 38(1): 253–278

    Article  CAS  Google Scholar 

  4. Yu H, Irie H, Hashimoto K. Conduction Band Energy Level Control of Titanium Dioxide: Toward an Efficient Visible-Light-Sensitive Photocatalyst[J]. Journal of the American Chemical Society, 2010, 132(20): 6 898–6 899

    Article  CAS  Google Scholar 

  5. Wang X, Li S, Yu H, et al. Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity[J]. Chemistry-a European Journal, 2011, 17(28): 7 777–7 780

    Article  CAS  Google Scholar 

  6. Yi ZG, Ye JH, Kikugawa N, et al. An Orthophosphate Semiconductor with Photooxidation Properties under Visible-light Irradiation[J]. Nature Materials, 2010, 9(7): 559–564

    Article  CAS  Google Scholar 

  7. Chakrabarti S, Dutta BK. Photocatalytic Degradation of Model Textile Dyes in Wastewater Using ZnO as Semiconductor Catalyst[J]. Journal of Hazardous Materials, 2004, 112(3): 269–278

    Article  CAS  Google Scholar 

  8. Xiong HM, Xu Y, Ren QG, et al. Stable Aqueous ZnO@ Polymer Core — Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging[J]. Journal of the American Chemical Society, 2008, 130(24): 7 522–7 523

    Article  CAS  Google Scholar 

  9. Gorla C, Emanetoglu N, Liang S, et al. Structural, Optical, and Surface Acoustic Wave Properties of Epitaxial ZnO Films Grown on (0112) Sapphire by Metalorganic Chemical Vapor Deposition[J]. Journal of Applied Physics, 1999, 85: 2 595–2 603

    Article  CAS  Google Scholar 

  10. Kong XY, Wang ZL. Polar-surface Dominated ZnO Nanobelts and the Electrostatic Energy Induced Nanohelixes, Nanosprings, and Nanospirals[J]. Applied physics letters, 2004, 84: 975–978

    Article  CAS  Google Scholar 

  11. Carotta M, Cervi A, Natale V Di, et al. ZnO Gas Sensors: a Comparison between Nanoparticles and Nanotetrapods-based Thick Films[J]. Sensors and Actuators B: Chemical, 2009, 137(1): 164–169

    Article  Google Scholar 

  12. Saito M, Fujihara S. Large Photocurrent Generation in Dye-sensitized ZnO Solar Cells[J]. Energy & Environmental Science, 2008, 1(2): 280–283

    Article  CAS  Google Scholar 

  13. Wang Q, Geng BY, Wang SZ. ZnO/Au Hybrid Nanoarchitectures: Wet-Chemical Synthesis and Structurally Enhanced Photocatalytic Performance[J]. Environmental Science & Technology, 2009, 43(23):8 968–8 973

    Article  CAS  Google Scholar 

  14. Zheng YH, Zheng LR, Zhan YY, et al. Ag/ZnO Heterostructure Nanocrystals: Synthesis, Characterization, and Photocatalysis[J]. Inorganic Chemistry, 2007, 46(17): 6 980–6 986

    CAS  Google Scholar 

  15. Zheng YH, Chen CQ, Zhan YY, et al. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property[J]. Journal of Physical Chemistry C, 2008, 112(29):10 773–10 777

    Article  CAS  Google Scholar 

  16. Wang X, Wang W, Liu P, et al. Photocatalytic Degradation of E. coli Membrane Cell in the Presence of ZnO Nanowires[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2011, 26(2): 222–225

    Article  CAS  Google Scholar 

  17. Liu B, Zeng HC. Room Temperature Solution Synthesis of Monodispersed Single-crystalline ZnO Nanorods and Derived Hierarchical Nanostructures[J]. Langmuir, 2004, 20(10): 4196–4204

    Article  CAS  Google Scholar 

  18. Deng ZW, Chen M, Gu GX, et al. A Facile Method to Fabricate ZnO Hollow Spheres and Their Photocatalytic Property[J]. Journal of Physical Chemistry B, 2008, 112(1): 16–22

    Article  CAS  Google Scholar 

  19. Lao JY, Wen JG, Ren ZF. Hierarchical ZnO Nanostructures[J]. Nano Letters, 2002, 2(11): 1 287–1 291

    Article  CAS  Google Scholar 

  20. Chu DW, Masuda Y, Ohji T, et al. Formation and Photocatalytic Application of ZnO Nanotubes Using Aqueous Solution[J]. Langmuir, 2010, 26(4): 2 811–2 815

    Article  CAS  Google Scholar 

  21. Yu JG, Yu XX. Hydrothermal Synthesis and Photocatalytic Activity of Ainc Oxide Hollow Spheres[J]. Environmental Science & Technology, 2008, 42(13): 4 902–4 907

    Article  CAS  Google Scholar 

  22. Chen CC, Fan HJ, Jan JL. Degradation Pathways and Efficiencies of Acid Blue 1 by Photocatalytic Reaction with ZnO Nanopowder[J]. Journal of Physical Chemistry C, 2008, 112(31): 11 962–11 972

    CAS  Google Scholar 

  23. Li D, Haneda H. Morphologies of Zinc Oxide Particles and Their Effects on Photocatalysis[J]. Chemosphere, 2003, 51(2): 129–137

    Article  CAS  Google Scholar 

  24. Yang LY, Dong SY, Sun JH, et al. Microwave-assisted Preparation, Characterization and Photocatalytic Properties of a Dumbbell-shaped ZnO Photocatalyst[J]. Journal of Hazardous Materials, 2010, 179(1): 438–443

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Wang  (王苹).

Additional information

Funded by the National Natural Science Foundation of China (No. 20803055) and the Fundamental Research Funds for the Central Universities (2010-1a-008, 2011-1a-39, 2011-1a-16)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Y., Zhan, S. & Wang, P. A facile synthesis of Ag Modified ZnO nanocrystals with enhanced photocatalytic activity. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 27, 615–620 (2012). https://doi.org/10.1007/s11595-012-0515-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-012-0515-2

Key words

Navigation