Skip to main content
Log in

Structure and properties of CaO-MgO-SiO2 inorganic glass fiber with additives (Al2O3, Y2O3)

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Structure, crystallization and dissolution properties of CaO-MgO-SiO2 inorganic glass fiber in the presence of additives (Al2O3, Y2O3) were investigated by DTA, XRD, FTIR and ICP-AES techniques. The results show that with the addition of Al2O3 and Y2O3, the glass network structure is strengthened and the precipitation of crystals is inhibited for heat-treated fibers. Compared with Y2O3 doped fibers, Al2O3 presents more significant effects on the enhancement of silica network and the inhibition of crystallization in fibers. As for dissolution properties in physiological fluids, though the weight losses, changes of pH values and leached ions concentration lower slightly with the addition of Al2O3 and Y2O3 for the intensified network structure, and fibers still present high dissolution rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. International Agency for Research on Cancer (IARC). Monographs on the Evaluation of Carcinogenic Risk to Humans: Man-Made Vitreous Fibers [C]. Lyon, France, 2002, 81: 57–339

    Google Scholar 

  2. Hesterberg T W, Hart G A, Chevalier J, et al. The Importance of Fiber Biopersistence and Lung Dose in Determining the Chronic Inhalation Effects of X607, RCF1, and Chrysotile Asbestos in Rats [J]. Toxicol. Appl. Pharmacol., 1998, 153(1): 68–82

    Article  CAS  Google Scholar 

  3. Liu H, Wang X T, Wang Z F, et al. Effect of TiO2-coating on the Crystallization Behavior of CaO-MgO-SiO2 System Ceramic Fibers [J]. Journal of Wuhan University of Science and Technology, 2009, 32(1): 170–172 (in Chinese)

    CAS  Google Scholar 

  4. Wang X T, Luo C Z, Zhang B G. Behavior of CaO-MgO-SiO2 System Bio-soluble Refractory Ceramic Fibers [J]. Key Eng. Mater., 2007, 336–338: 1 556–1 558

    Google Scholar 

  5. Wallenberger F T, Hichs R J, Bierhals A T. Design of Environmentally Friendly Fiberglass Compositions: Ternary Eutectic SiO2-Al2O3-CaO Compositions, Structures and Properties [J]. J. Non-Cryst. Solids, 2004, 349: 377–387

    Article  CAS  Google Scholar 

  6. Shyu J J, Hwang C S. Effect of Y2O3 and La2O3 Addition on the Crystallization of Li2O·Al2O3·4SiO2 Glass-Ceramics [J]. J. Mater. Sci., 1996, 31(10): 2 631–2 639

    Article  CAS  Google Scholar 

  7. Wang M T, Cheng J S, Liu Q M, et al. The Effect of Light Rare Earths on the Chemical Durability and Weathering of Na2O-CaO-SiO2 Glasses [J]. J. Nucl. Mater., 2010, 400(2): 107–111

    Article  CAS  Google Scholar 

  8. Kim K A, Lee W K, Kim J K, et al. Mechanism of Refractory Ceramic Fiber- and Rock Wool-induced Cytotoxicity in Alveolar Macrophages [J]. Int. Arch. Occup. Environ. Health, 2001, 74(1): 9–15

    Article  CAS  Google Scholar 

  9. Potter R M, Mattson S M. Glass Fiber Dissolution in a Physiological Saline Solution [J]. Glastech. Ber., 1991, 64: 16–28

    CAS  Google Scholar 

  10. Lusvardi G, Malavasi G, Menabue L, et al. A Computational Tool for the Prediction of Crystalline Phases Obtained from Controlled Crystallization of Glasses [J]. J. Phys. Chem. B, 2005, 109(46): 21 586–21 592

    Article  CAS  Google Scholar 

  11. Lange P. Evidence for Disorder-induced Vibrational Mode Coupling in Thin Amorphous SiO2 Films [J]. J. Appl. Phys., 1989, 66(1): 201–204

    Article  CAS  Google Scholar 

  12. Parada E G, González P, Pou J, et al. Aging of Photochemical Vapor Deposited Silicon Oxide Thin Films [J]. J. Vac. Sci. Technol. A, 1996, 14(2): 436–440

    Article  CAS  Google Scholar 

  13. Szumera M, Waclawska I, Mozgawa W, et al. Spectroscopic Study of Biologically Active Glass [J]. J. Mol. Struct., 2005, 744–747: 609–614

    Article  Google Scholar 

  14. Baillif P, Chouikhi B, Barbanson L, et al. Dissolution Kinetics of Glass Fibres in Saline Solution: in Vitro Persistence of a Sparingly Soluble Aluminium-rich Leached Layer [J]. J. Material. Sci., 1995, 30(22): 5 691–5 699

    Article  CAS  Google Scholar 

  15. Brady P V. Silica Surface Chemistry at Elevated Temperatures [J]. Geochim. Cosmochim. Acta, 1992, 56(7): 2 941–2 946

    Article  CAS  Google Scholar 

  16. Dove P M, Crerara D A. Kinetics of Quartz Dissolution in Electrolyte Solutions Using a Hydrothermal Mixed Flow Reactor [J]. Geochim. Cosmochim. Acta, 1990, 54(4): 955–969

    Article  CAS  Google Scholar 

  17. Leineweber J P. Solubility of Fibres in Vitro and in Vivo. In: Proceedings of a WHO/IARC Conference on Biological Effects of Manmade Mineral Fibres [C]. Copenhagen: World Health Organization, 1984, 12: 87–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu  (刘浩).

Additional information

Funded by the National High Technology Research and Development Program (“863” Program) of China (No.2009AA032503), the National Natural Science Foundation of China (Nos.50872098, 51004080), and the Open Fund of the Key State Laboratory Breeding Base of Refractories and Ceramics (Wuhan University of Science and Technology (No.G201004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Wang, X., Zhang, B. et al. Structure and properties of CaO-MgO-SiO2 inorganic glass fiber with additives (Al2O3, Y2O3). J. Wuhan Univ. Technol.-Mat. Sci. Edit. 27, 58–62 (2012). https://doi.org/10.1007/s11595-012-0407-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-012-0407-5

Key words

Navigation