Skip to main content
Log in

Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The microstructure evolution of Ti-47Al-2Cr-2Nb alloy was investigated on liquid metal cooling type directional solidified apparatus at high temperature gradient. The analysis shows that it is solidified with primary β cells/dendrites, and then α phase is formed through peritectic reaction. Once the columnar grains grow into the steady state, the lamellar orientation inclined with the angle of 45° to the withdrawal direction is more favored than that with parallel to the withdrawal direction. In addition, α phase grain nucleates from β-interdendrite regions, and grows up to the dendritic trunk. If no other α grain hinders its growth, it would occupy the whole dendrite, or it would stop at the dendritic trunk for the weakened motivating drive in the β dendritic core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luo W, Shen J, Min Z, et al. Lamellar Orientation Control of TiAl Alloys under High Temperature Gradient with a Ti-43Al-3Si Seed [J]. J.Cryst.Growth, 2008, 310(24): 5441–5446

    Article  CAS  Google Scholar 

  2. Yamaguchi M, Inui H, Ito K. High-temperature Structural Intermetallics[J]. Acta Mater., 2000, 48(1): 307–322

    Article  CAS  Google Scholar 

  3. Dimiduk D M. Gamma Titanium Aluminide Alloys-An assessment within the Competition of Aerospace Structural Materials[J]. Mater. Sci. Eng. A, 1999, 263(2): 281–288

    Article  Google Scholar 

  4. Kim Y W. Gamma Titanium Aluminide: Their Status and Future[J]. JOM., 1995, 47(7): 39–41

    CAS  Google Scholar 

  5. Kishida K, Johnson D R, Masuda Y, et al. Deformation and Fracture of PST Crystals and Directionally Solidified Ingots of TiAl-based Alloys[J]. Intermetallics, 1998, 6(7–8): 679–683

    Article  CAS  Google Scholar 

  6. Yamaguchi M, Johnson D R, Lee H N, et al. Directional Solidifcation of TiAl-base Alloys [J]. Intermetallics, 2000, 8(5–6):511–517

    Article  CAS  Google Scholar 

  7. Johnson D R, Inui H, Muto S, et al. Microstructural Development during Directional Solidification of α-seeded TiAl Alloys[J]. Acta Mater., 2006, 54(4): 1077–1085

    Article  CAS  Google Scholar 

  8. Takeyama M, Yamamoto Y, Morishima H, et al. Lamellar Orientation Control of Ti-48Al PST Crystal by Unidirectional Solidification[J]. Mater. Sci. Eng. A, 2002, 329–331: 7–12

    Google Scholar 

  9. Lee H N, Johnson D R, Inui H, et al. Microstructural Control through Seeding and Directional Solidification of TiAl Alloys Containing Mo and C[J]. Acta Mater., 2000, 48(12): 3221–3233

    Article  CAS  Google Scholar 

  10. Johnson D R, Chihara K, Inui H, et al. Microstructural Control of TiAl-Mo-B Alloys by Directional Solidification[J]. Acta Mater., 1998, 46(18): 6529–6540

    Article  CAS  Google Scholar 

  11. Johnson D R, Masuda Y, Inui H, et al. Alignment of the TiAl/Ti3Al Lamellar Microstructure in TiAl Alloys by Directional Solidification[J]. Mater. Sci. Eng. A, 1997, 239–240:577–583

    Google Scholar 

  12. Johnson D R, Inui H, Yamaguchi M. Directional Solidification and Microstructure Control of the TiAl/Ti3Al Lamellar Microstructure in TiAl-Si Alloys[J]. Acta Mater., 1996, 44(6): 2523–2535

    Article  CAS  Google Scholar 

  13. Jung I S, Jang H S, Oh M H, et al. Microstructure Control of TiAl Alloys Containing β Stabilizers by Directional Solidification[J]. Mater. Sci. Eng. A, 2002, 329–331: 13–18

    Google Scholar 

  14. Saari H, Beddoes J, Seo D Y, et al. Development of directionally Solidified γ-TiAl Structures[J]. Intermetallics, 2005, 13(9): 937–943

    Article  CAS  Google Scholar 

  15. Jung I S, Kim M C, Lee J H, et al. High Temperature Phase Equilibria Near Ti-50 at% Al Composition in Ti-Al System Studied by Directional Solidifcation[J]. Intermetallics, 1999, 7(11): 1247–1253

    Article  CAS  Google Scholar 

  16. Kim M C, Oh M H, Lee J H, et al. Composition and Growth rate Effects in Directionally Solidified TiAl Alloys[J]. Mater. Sci. Eng. A, 1997, 239–240: 570–576

    Google Scholar 

  17. Fu H Z, Guo J J, Liu L, et al. Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Publications, 2008: 502

    Google Scholar 

  18. Kurz W, Fisher D J. Fundamentals of Solidification[M]. 4th edn. Switzerland: Trans Tech Publications, 1998: 88

    Google Scholar 

  19. Denquin A, Naka S. Phase Transformation Mechanisms involved in Two-phase TiAl-based Alloys-I. Lamellar Structure Formation[J]. Acta Mater., 1996, 44(1): 343–352

    Article  CAS  Google Scholar 

  20. Hecht U, Witusiewicz V, Drevermann A, et al. Grain refinement by Low Boron Additions in Niobium-rich TiAl-based Alloys[J]. Intermetallics, 2008, 16(8): 969–978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhang  (张虎).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Z., Zheng, L., Wang, L. et al. Microstructure evolution of Ti-47Al-2Cr-2Nb alloy in the liquid-metal-cooling (LMC) directional-solidification process. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 26, 197–201 (2011). https://doi.org/10.1007/s11595-011-0196-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-011-0196-2

Key words

Navigation