Skip to main content
Log in

Formation of CuS pineal microspheres via a pyridine-solvothermal process

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

CuS pineal microspheres congregated from interleaving nanoflakes with thickness of 40 to 200 nm were synthesized by a pyridine-solvothermal process via the reaction between cupric chloride (CuCl2·2H2O) and thioacetamide (TAA, CH3CSNH2). The products were characterized by X-ray diffraction and scanning electron microscopy. UV-Vis absorption spectrum, excitation and photoluminescence spectra of CuS pineal microspheres were obtained at room temperature to investigate their optical properties. A possible growth mechanism on the formation of CuS pineal microspheres is proposed. The factors influencing the evolution of morphologies of CuS crystals including the dosage of the reactants, surfactant, and sulphur-source were also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R S Mane, C D Lokhande. Chemical Deposition Method for Metal Chalcogenide Thin Films[J]. Mater. Chem. Phys., 2000, 65(1): 1–31

    Article  CAS  Google Scholar 

  2. L Reijnen, B Meester, A Goossens, et al. Atomic Layer Deposition of CuxS for Solar Energy Conversion[J]. Chem. Vap. Deposition, 2003, 9(1): 15–20

    Article  CAS  Google Scholar 

  3. M T S Nair, P K Nair. Chemical Bath Deposition of CuxS Thin Films and Their Prospective Large Area Applications[J]. Semicond. Sci. Technol., 1989, 4(3): 191–199

    Article  CAS  ADS  Google Scholar 

  4. W Liang, M H Whangbo. Conductivity Anisotropy and Structural Phase Transition in Covellite CuS[J]. Solid State Commun., 1993, 85(5): 405–408

    Article  CAS  ADS  Google Scholar 

  5. J S Chung, H J Sohn. Electrochemical Behaviors of CuS as a Cathode Material for Lithium Secondary Batteries[J]. J. Power Sources, 2002, 108(2): 226–231

    Article  CAS  Google Scholar 

  6. C Q Xu, Z C Zhang, Q Ye, et al. Synthesis of Copper Sulfide Nanowhisker via Sonochemical Way and Its Characterization[ J]. Chem. Lett., 2003,32(2): 198–199

    Article  CAS  MathSciNet  ADS  Google Scholar 

  7. Y He, X Yu, X Zhao. Synthesis of Hollow CuS Nanostructured Microspheres with Novel Surface Morphologies[J]. Mater. Lett., 2007,61(14–15): 3 014–3 016

    CAS  Google Scholar 

  8. X H Liao, N Y Chen, S Xu, et al. A Microwave Assisted Heating Method for the Preparation of Copper Sulfide Nanorods[J]. J. Cryst. Growth, 2003, 252(4): 593–598

    Article  CAS  ADS  Google Scholar 

  9. L Gao, E Wang, S Lian, et al. Microemulsion-directed Synthesis of Different CuS Nanocrystals[J]. Solid State Commun., 2004,130(5): 309–312

    Article  CAS  ADS  Google Scholar 

  10. G Mao, W Dong, D G Kurth, et al. Synthesis of Copper Sulfide Nanorod Arrays on Molecular Templates[J]. Nano Lett., 2004,4(2): 249–252

    Article  CAS  ADS  Google Scholar 

  11. Q Y Lu, F Gao, D Y Zhao. One-step Synthesis and Assembly of Copper Sulfide Nanoparticles to Nanowires, Nanotubes, and Nanovesicles by a Simple Organic Amine-assisted Hydrothermal Process[J]. Nano Lett., 2002,2(7): 725–728

    Article  CAS  ADS  Google Scholar 

  12. L Y Zhu, Y Xie, X W Zheng, et al. Fabrication of Novel Urchin-like Architecture and Snowflake-like Pattern CuS[J]. J. Cryst. Growth, 2004,260(3–4): 494–499

    Article  CAS  ADS  Google Scholar 

  13. S Gorai, D Ganguli, S Chaudhuri. Synthesis of Copper Sulfides of Varying Morphologies and Stoichiometries Controlled by Chelating and Nonchelating Solvents in a Solvothermal Process[J]. Cryst. Growth Des., 2005, 5(3): 875–877

    Article  CAS  Google Scholar 

  14. Y Ni, F Wang, H Liu, et al. A Novel Source-template Route for Preparation of Copper Sulfide Submicron Wires[J]. Chin. J. Inorg. Chem., 2003,19(11): 1 197–1 201

    CAS  Google Scholar 

  15. C Tan, Y Zhu, R Lu, et al. Synthesis of Copper Sulfide Nanotube in the Hydrogel System[J]. Mater. Chem. Phys., 2005, 91(1): 44–47

    Article  CAS  Google Scholar 

  16. R Nomura, K Miyawaki, T Toyosaki, et al. Preparation of Copper Sulfide Thin Layers by a Single-source MOCVD Process[J]. Chem. Vap. Depos., 1996, 2(5): 174–179

    Article  CAS  Google Scholar 

  17. H L Zhu, X Ji, D Yang, et al. Novel CuS Hollow Spheres Fabricated by a Novel Hydrothermal Method[J]. Micropor. Mesopor. Mat., 2005, 80(1–3): 153–156

    Article  CAS  Google Scholar 

  18. A M Qin, Y P Fang, H D Ou, et al. Formation of Various Morphologies of Covellite Copper Sulfide Submicron Crystals by a Hydrothermal Method without Surfactant[J]. Cryst. Growth Des., 2005, 5(3): 855–860

    Article  CAS  Google Scholar 

  19. A Ghezelbash, B A Korgel. Nickel Sulfide and Copper Sulfide Nanocrystal Synthesis and Polymorphism[J]. Langmuir, 2005, 21(21): 9 451–9 456

    Article  CAS  Google Scholar 

  20. C H An, S T Wang, J He, et al. A Composite-surfactants-assisted-solvothermal Process to Copper Sulfide Nanocrystals[J]. J. Cryst. Growth, 2008, 310(2): 266–269

    Article  CAS  ADS  Google Scholar 

  21. T Thongtem, A Phuruangrat, S Thongtem. Formation of CuS with Flower-like, Hollow Spherical, and Tubular Structures Using the Solvothermal-microwave Process[J]. Curr. Appl. Phys., 2009, 9(1): 195–200

    Article  ADS  Google Scholar 

  22. X Gou, F Cheng, Y Shi, et al. Shape-controlled Synthesis of Ternary Chalcogenide ZnIn2S4 and CuIn(S, Se)2 Nano-/Microstructures via Facile Solution Route[J]. J. Am. Chem. Soc., 2006, 128(22): 7 222–7 229

    Article  CAS  Google Scholar 

  23. J Y Gong, S H Yu, H S Qian, et al. Acetic Acid-assisted Solution Process for Growth of Complex Copper Sulfide Microtubes Constructed by Hexagonal Nanoflakes[J]. Chem. Mater., 2006, 18(8): 2 012–2 015

    Article  CAS  Google Scholar 

  24. P Roy, S K Srivastava. Synthesis of Twinned CuS Nanorods by a Simple Wet Chemical Method Cryst[J]. Growth Des., 2008, 8(5): 1 530–1 534

    CAS  Google Scholar 

  25. C Tan, Y Zhu, R Lu, et al. Synthesis of Copper Sulfide Nanotube in the Hydrogel System[J]. Mater. Chem. Phys., 2005, 91(1): 44–47

    Article  CAS  Google Scholar 

  26. H Ji, J Cao, J Feng, et al. Fabrication of CuS Nanocrystals with Various Morphologies in the Presence of a Nonionic Surfactant[J]. Mater. Lett., 2005, 59(24–25): 3 169–3 172

    CAS  Google Scholar 

  27. S K Haram, A Mahadeshwar, S G Dixit. Synthesis and Characterization of Copper Sulfide Nanoparticles in Triton-X 100 Water-in-oil Microemulsions[J]. J. Phys. Chem., 1996, 100(14): 5 868–5 873

    Article  CAS  Google Scholar 

  28. S Ou, Q Xie, D Ma, et al. A Precursor Decomposition Route to Polycrystalline CuS Nanorods[J]. Mater. Phys. Chem., 2005, 94(2–3): 460–466

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo’e Cheng  (程国娥).

Additional information

Funded by the Natural Science Foundation of Hubei Province (No.2008CDB013)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ke, H., Luo, W., Cheng, G. et al. Formation of CuS pineal microspheres via a pyridine-solvothermal process. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 25, 459–463 (2010). https://doi.org/10.1007/s11595-010-0023-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-010-0023-1

Key words

Navigation