Skip to main content
Log in

Disciplined geometric programming

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We introduce log-log convex programs, which are optimization problems with positive variables that become convex when the variables, objective functions, and constraint functions are replaced with their logs, which we refer to as a log-log transformation. This class of problems generalizes traditional geometric programming and generalized geometric programming, and it includes interesting problems involving nonnegative matrices. We give examples of log-log convex functions, some well-known and some less so, and we develop an analog of disciplined convex programming, which we call disciplined geometric programming. Disciplined geometric programming is a subclass of log-log convex programming generated by a composition rule and a set of functions with known curvature under the log-log transformation. Finally, we describe an implementation of disciplined geometric programming as a reduction in CVXPY 1.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agrawal, A., Verschueren, R., Diamond, S., Boyd, S.: A rewriting system for convex optimization problems. J. Control Decis. 5(1), 42–60 (2018)

    Article  MathSciNet  Google Scholar 

  2. Bagnoli, M., Bergstrom, T.: Log-concave probability and its applications. Econ. Theory 26(2), 445–469 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baricz, Á.: Geometrically concave univariate distributions. J. Math. Anal. Appl. 363(1), 182–196 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Kim, S.J., Patil, D., Horowitz, M.: Digital circuit optimization via geometric programming. Op. Res. 53(6), 899–932 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boyd, S., Kim, S.J., Vandenberghe, L., Hassibi, A.: A tutorial on geometric programming. Optim. Eng. 8(1), 67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  7. Boyd, S., Vandenberghe, L.: Convex Optim. Cambridge University Press, New York (2004)

    Book  MATH  Google Scholar 

  8. Brown, A., Harris, W.: A vehicle design and optimization model for on-demand aviation. In: AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (2018)

  9. Burnell, E., Hoburg, W.: GPkit software for geometric programming. https://github.com/convexengineering/gpkit (2018). Version 0.7.0

  10. Calafiore, G., Gaubert, S., Possieri, C.: Log-sum-exp neural networks and posynomial models for convex and log-log-convex data. arXiv (2018)

  11. Chiang, M.: Geometric programming for communication systems. Commun. Inf. Theory 2(1/2), 1–154 (2005)

    MATH  Google Scholar 

  12. Chiang, M., Tan, C.W., Palomar, D., O’neill, D., Julian, D.: Power control by geometric programming. IEEE Trans. Wirel. Commun. 6(7), 2640–2651 (2007)

    Article  Google Scholar 

  13. Clasen, R.: The solution of the chemical equilibrium programming problem with generalized benders decomposition. Op. Res. 32(1), 70–79 (1984)

    Article  MATH  Google Scholar 

  14. Diamond, S., Boyd, S.: CVXPY: a python-embedded modeling language for convex optimization. J. Mach. Learn. Res. 17(83), 1–5 (2016)

    MathSciNet  MATH  Google Scholar 

  15. Doyle, P., Reeds, J.: The knee-jerk mapping. arXiv (2006)

  16. Duffin, R., Peterson, E., Zener, C.: Geometric Programming—Theory and Application. Wiley, Hoboken (1967)

    MATH  Google Scholar 

  17. Förster, K.H., Nagy, B.: Spectral properties of operator polynomials with nonnegative coefficients. In: Berlin, B.B. (ed.) Operator Theory and Indefinite Inner Product Spaces, pp. 147–162. Springer, Berlin (2005)

    Google Scholar 

  18. Fu, A., Narasimhan, B., Boyd, S.: CVXR: An R package for disciplined convex optimization. arXiv (2017)

  19. Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Blondel, V., Boyd, S., Kimura, H. (eds.) Recent Advances in Learning and Control Lecture Notes in Control and Information Sciences, pp. 95–110. Springer, Berlin (2008)

    Google Scholar 

  20. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. http://cvxr.com/cvx (2014)

  21. Grant, M., Boyd, S., Ye, Y.: Disciplined convex programming. In: Grant, M. (ed.) Global Optimization, pp. 155–210. Springer, Berlin (2006)

    Chapter  Google Scholar 

  22. Greenberg, H.: Mathematical programming models for environmental quality control. Op. Res. 43(4), 578–622 (1995)

    Article  MATH  Google Scholar 

  23. Hershenson, M., Boyd, S., Lee, T.: Optimal design of a CMOS op-amp via geometric programming. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 20(1), 1–21 (2001)

    Article  Google Scholar 

  24. Hoburg, W., Abbeel, P.: Geometric programming for aircraft design optimization. AIAA J. 52(11), 2414–2426 (2014)

    Article  Google Scholar 

  25. Hoburg, W., Kirschen, P., Abbeel, P.: Data fitting with geometric-programming-compatible softmax functions. Optim. Eng. 17(4), 897–918 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jabr, R.A.: Application of geometric programming to transformer design. IEEE Trans. Magn. 41(11), 4261–4269 (2005)

    Article  Google Scholar 

  27. Jarczyk, W., Matkowski, J.: On Mulholland’s inequality. Proc. Am. Math. Soc. 130(11), 3243–3247 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kandukuri, S., Boyd, S.: Optimal power control in interference-limited fading wireless channels with outage-probability specifications. Trans. Wirel. Commun. 1(1), 46–55 (2002)

    Article  Google Scholar 

  29. Kingman, J.: A convexity property of positive matrices. Q. J. Math. 12(1), 283–284 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, X., Gopalakrishnan, P., Xu, Y., Pileggi, L.: Robust analog/RF circuit design with projection-based posynomial modeling. In: Proceedings of the 2004 IEEE/ACM International Conference on Computer-aided Design, ICCAD ’04, pp. 855–862. IEEE Computer Society, Washington, DC (2004)

  31. Löfberg, J.: YALMIP: A toolbox for modeling and optimization in MATLAB. In: Proceedings of the CACSD Conference. Taipei, Taiwan (2004)

  32. Marin-Sanguino, A., Voit, E., Gonzalez-Alcon, C., Torres, N.: Optimization of biotechnological systems through geometric programming. Theor. Biol. Med. Model. 4(1), 38 (2007)

    Article  Google Scholar 

  33. Misra, S., Fisher, M., Backhaus, S., Bent, R., Chertkov, M., Pan, F.: Optimal compression in natural gas networks: a geometric programming approach. IEEE Trans. Control Netw. Syst. 2(1), 47–56 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Montel, P.: Sur les fonctions convexes et les fonctions sousharmoniques. J. Math. Pures Appl. 9(7), 29–60 (1928)

    MATH  Google Scholar 

  35. Mutapcic, A., Koh, K., Kim, S., Boyd, S.: GGPLAB: a matlab toolbox for geometric programming. Available from https://web.stanford.edu/~boyd/ggplab/ (2006)

  36. Nesterov, Y., Nemirovski, A.: Interior-point Polynomial Algorithms in Convex Programming. Society for Industrial and Applied Mathematics (1994)

  37. Niculescu, C.: Convexity according to the geometric mean. Math. Inequal. Appl. 3(2), 155–167 (2000)

    MathSciNet  MATH  Google Scholar 

  38. Nussbaum, R.: Convexity and log convexity for the spectral radius. Linear Algebra Appl. 73, 59–122 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  39. Özdemir, M.E., Yildiz, Ç., Gürbüz, M.: A note on geometrically convex functions. J. Inequal. Appl. 2014(1), 180 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Perelman, L.S., Amin, S.: Control of tree water networks: a geometric programming approach. Water Resour. Res. 51(10), 8409–8430 (2015)

    Article  Google Scholar 

  41. Preciado, V., Zargham, M., Enyioha, C., Jadbabaie, A., Pappas, G.: Optimal resource allocation for network protection: a geometric programming approach. IEEE Trans. Control Netw. Syst. 1(1), 99–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Saab, A., Burnell, E., Hoburg, W.: Robust designs via geometric programming. arXiv (2018)

  43. Tan, C.W.: Wireless network optimization by Perron–Frobenius theory. Found. Trends Netw. 9(2–3), 107–218 (2015)

    Article  MATH  Google Scholar 

  44. Udell, M., Mohan, K., Zeng, D., Hong, J., Diamond, S., Boyd, S.: Convex optimization in Julia. In: SC14 Workshop on High Performance Technical Computing in Dynamic Languages (2014)

  45. Vera, J., González-Alcón, C., Marín-Sanguino, A., Torres, N.: Optimization of biochemical systems through mathematical programming: methods and applications. Comput. Op. Res. 37(8), 1427–1438 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xu, Y., Pileggi, L., Boyd, S.: ORACLE: optimization with recourse of analog circuits including layout extraction. In: Proceedings of the 41st Annual Design Automation Conference, DAC ’04, pp. 151–154. ACM, New York, USA (2004)

Download references

Funding

A. Agrawal was supported by an Electrical Engineering Departmental Stanford Fellowship while this research was conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akshay Agrawal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A., Diamond, S. & Boyd, S. Disciplined geometric programming. Optim Lett 13, 961–976 (2019). https://doi.org/10.1007/s11590-019-01422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01422-z

Keywords

Navigation