Skip to main content
Log in

The magnitude of the minimal displacement vector for compositions and convex combinations of firmly nonexpansive mappings

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Maximally monotone operators and firmly nonexpansive mappings play key roles in modern optimization and nonlinear analysis. Five years ago, it was shown that if finitely many firmly nonexpansive operators are all asymptotically regular (i.e., they have or “almost have” fixed points), then the same is true for compositions and convex combinations. In this paper, we derive bounds on the magnitude of the minimal displacement vectors of compositions and of convex combinations in terms of the displacement vectors of the underlying operators. Our results completely generalize earlier works. Moreover, we present various examples illustrating that our bounds are sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We shall write \({\text {dom}}A = \big \{{x\in X}~\big |~{Ax\ne \varnothing }\big \}\) for the domain of A, \({\text {ran}}A = A(X) = \bigcup _{x\in X}Ax\) for the range of A, and \({\text {gra}}A=\big \{{(x,u)\in X\times X}~\big |~{u\in Ax}\big \}\) for the graph of A.

  2. Here and elsewhere, \({\text {Id}}\) denotes the identity operator on X.

  3. Given a nonempty closed convex subset C of X, we denote its projection mapping or projector by \(P_C\).

  4. Let \(S:X\rightarrow X\). Then S is \(\alpha \)-averaged if there exists \(\alpha \in [0,1[\) such that \(S=(1-\alpha ){\text {Id}}+\alpha N\) and \(N:X\rightarrow X\) is nonexpansive.

  5. We recall that a monotone operator \(B:X\rightrightarrows X\) is 3* monotone (see [9]) (this is also known as rectangular) if \((\forall (x,y^*)\in {\text {dom}}B\times {\text {ran}}B)\) \(\sup _{(z,z^*)\in {\text {gra}}B} \left\langle {x-z},{z^*-y^*} \right\rangle <+\infty \).

References

  1. Bauschke, H.H.: The composition of finitely many projections onto closed convex sets in Hilbert space is asymptotically regular. Proc. Am. Math. Soc. 131, 141–146 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bauschke, H.H., Borwein, J.M.: Dykstra’s alternating projection algorithm for two sets. J. Approx. Theory 79, 418–443 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Second edn. Springer, Berlin (2017)

    Book  Google Scholar 

  4. Bauschke, H.H., Hare, W.L., Moursi, W.M.: Generalized solutions for the sum of two maximally monotone operators. SIAM J. Control Optim. 52, 1034–1047 (2014)

    Article  MathSciNet  Google Scholar 

  5. Bauschke, H.H., Martin-Marquez, V., Moffat, S.M., Wang, X.: Compositions and convex combinations of asymptotically regular firmly nonexpansive mappings are also asymptotically regular. Fixed Point Theory Appl. 2012, 53 (2012)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Moursi, W.M.: The Douglas–Rachford algorithm for two (not necessarily intersecting) affine subspace. SIAM J. Optim. 26, 968–985 (2016)

    Article  MathSciNet  Google Scholar 

  7. Borwein, J.M., Vanderwerff, J.D.: Convex Functions. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  8. Brezis, H.: Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland/Elsevier, Amsterdam (1973)

    MATH  Google Scholar 

  9. Brezis, H., Haraux, A.: Image d’une Somme d’opérateurs Monotones et Applications. Israel J. Math. 23, 165–186 (1976)

    Article  MathSciNet  Google Scholar 

  10. Burachik, R.S., Iusem, A.N.: Set-Valued Mappings and Enlargements of Monotone Operators. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. De Pierro, A.: From parallel to sequential projection methods and vice versa in convex feasibility: results and conjectures. In: Inherently parallel algorithms in feasibility and optimization and their applications (Haifa, 2000). Studies in Computational Mathematics, vol. 8, pp. 187–201. North-Holland, Amsterdam (2001)

  12. Eckstein, J., Bertsekas, D.P.: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55, 293–318 (1992)

    Article  MathSciNet  Google Scholar 

  13. GeoGebra. http://www.geogebra.org. Accessed 4 Dec 2017

  14. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  15. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  16. Kohlenbach, U.: A polynomial rate of asymptotic regularity for compositions of projections in Hilbert space. Found. Comput. Math. (2018). https://doi.org/10.1007/s10208-018-9377-0

    Article  Google Scholar 

  17. Kohlenbach, U., López-Acedo, G., Nicolae, A.: Quantitative asymptotic regularity results for the composition of two mappings. Optimization 66, 1291–1299 (2017)

    Article  MathSciNet  Google Scholar 

  18. Minty, G.J.: Monotone (nonlinear) operators in Hilbert spaces. Duke Math. J. 29, 341–346 (1962)

    Article  MathSciNet  Google Scholar 

  19. Moursi, W.M.: The forward–backward algorithm and the normal problem. J. Optim. Theory Appl. 176, 605–624 (2018)

    Article  MathSciNet  Google Scholar 

  20. Pennanen, T.: On the range of monotone composite mappings. J. Nonlinear Convex Anal. 2, 193–202 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  Google Scholar 

  22. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Berlin (2009). (corrected 3rd printing)

    MATH  Google Scholar 

  23. Simons, S.: From Hahn–Banach to Monotonicity. Springer, Berlin (2008)

    MATH  Google Scholar 

  24. Simons, S.: Minimax and Monotonicity. Springer, Berlin (1998)

    Book  Google Scholar 

  25. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, Singapore (2002)

    Book  Google Scholar 

  26. Zeidler, E.: Nonlinear Functional Analysis and Its Applications I: Fixed Point Theorems. Springer, Berlin (1993)

    MATH  Google Scholar 

  27. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, Berlin (1990)

    MATH  Google Scholar 

  28. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B: Nonlinear Monotone Operators. Springer, Berlin (1990)

    MATH  Google Scholar 

Download references

Acknowledgements

The research of HHB was partially supported by a Discovery Grant of the Natural Sciences and Engineering Research Council of Canada. WMM was was partially supported by the DIMACS/Simons Collaboration on Bridging Continuous and Discrete Optimization through NSF Grant # CCF-1740425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walaa M. Moursi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauschke, H.H., Moursi, W.M. The magnitude of the minimal displacement vector for compositions and convex combinations of firmly nonexpansive mappings. Optim Lett 12, 1465–1474 (2018). https://doi.org/10.1007/s11590-018-1259-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1259-5

Keywords

Navigation