Skip to main content
Log in

Polylithic modeling and solution approaches using algebraic modeling systems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Based on the Greek term monolithos (stone consisting of one single block) Kallrath (Comput Chem Eng 33:1983–1993, 2009) introduced the term polylithic for modeling and solution approaches in which mixed integer or non-convex nonlinear optimization problems are solved by tailor-made methods involving several models and/or algorithmic components, in which the solution of one model is input to another one. This can be exploited to initialize certain variables, or to provide bounds on them (problem-specific preprocessing). Mathematical examples of polylithic approaches are decomposition techniques, or hybrid methods in which constructive heuristics and local search improvement methods are coupled with exact MIP algorithms. Tailor-made polylithic solution approaches with thousands or millions of solve statements are challenges on algebraic modeling languages. Local objects and procedural structures are almost necessary. Warm-start and hot-start techniques can be essential. The effort of developing complex tailor-made polylithic solutions is awarded by enabling us to solve real-world problems far beyond the limits of monolithic approaches and general purpose solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barnhart C., Johnson E.L., Nemhauser G.L., Savelsberg M.W.P., Vance P.H.: Branch-and-price: column generation for solving huge integer programs. Oper. Res. 46(3), 316–329 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Beale E., Forrest J.: Global optimization using special ordered sets. Math. Progr. 10, 52–69 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  3. Benders J.F.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4, 238–252 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  4. Benoist T., Bourreau E.: Fast gloabl filtering for eternity II. Const. Progr. Lett. 3, 35–50 (2008)

    Google Scholar 

  5. Birge J.R., Louveaux F.V.: Introduction to Stochastic Programming, Operations Research and Financial Engineering. Springer, New York (2000)

    Google Scholar 

  6. Borisovsky P., Dolgui A., Eremeev A.: Genetic algorithms for supply management problem with lower-bounded demands. In: Dolgui, A., Morel, G., Pereira, C. (eds) Information Control Problems in Manufacturing 2006: A Proceedings volume from the 12th IFAC International Symposium, St Etienne, France, 17–19 May 2006, vol. 3, pp. 521–526. Elsevier, Dordrecht (2006)

    Google Scholar 

  7. Danna E., Rothberg E., Le Pape C.: Exploring relation induced neighborhoods to improve MIP solutions. Math. Progr. 102, 71–90 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dantzig B., Wolfe P.: The decomposition algorithm for linear programming. Oper. Res. 8, 101–111 (1960)

    Article  MATH  Google Scholar 

  9. de Farias I.R. Jr, Johnson E.L., Nemhauser G.L.: A generalized assignment problem with special ordered sets: a polyhedral approach. Math. Progr. Ser. A 89, 187–203 (2000)

    Article  MATH  Google Scholar 

  10. de Farias I.R. Jr, Zhao M., Zhao H.: A special ordered set approach for optimizing a discontinuous separable piecewise linear function. Oper. Res. Lett. 36, 234–238 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Desrochers M., Desrosiers J., Solomon M.M.: A new optimization algorithm for the vehicle routing problem with time windows. Oper. Res. 40(2), 342–354 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Van Dinter, J., Rebennack, S., Kallrath, J., Denholm, P., Newman, A.: The Unit commitment model: a tight formulation for benders’ decomposition with a case study. Ann. Oper. Res. (2011, in press)

  13. Fischetti M., Glover F.: The feasibility pump. Math. Progr. 104, 91–104 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fischetti M., Lodi A.: Local branching. Math. Progr. 98, 23–47 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Floudas C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  16. Floudas C.A.: Deterministic Global Optimization: Theory, Methods and Applications. Kluwer Academic Publishers, Dordrecht (2000)

    Google Scholar 

  17. Floudas C.A., Gounaris C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45, 3–38 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gilmore P.C., Gomory R.E.: A linear programming approach to the cutting stock problem. Oper. Res. 9, 849–859 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gilmore P.C., Gomory R.E.: A linear programming approach to the cutting stock problem, part II. Oper. Res. 11, 863–888 (1963)

    Article  MATH  Google Scholar 

  20. Harjunkoski I., Jain V., Grossmann I.E.: Hybrid mixed-integer/constrained logic programming strategies for solving scheduling and combinatorial optimization problems. Comput. Chem. Eng. 24, 337–343 (2000)

    Article  Google Scholar 

  21. Horst, R., Pardalos, P.M. (eds): Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  22. Howitt, R., Msangi, S., Reynaud, A., Knapp, K.: Using polynomial approximations to solve stochastic dynamic programming problems: or a “betty crocker” approach to SDP. Technical report, Department of Agricultural and Resource Economics, University of California at Davis, Davis (2002)

  23. Ignizio J.P.: Goal Programming and Extensions. Heath, Lexington (1976)

    Google Scholar 

  24. Jain V., Grossmann I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. IFORMS J. Comput. 13, 258–276 (2001)

    Article  MathSciNet  Google Scholar 

  25. Johnson E.L., Kostreva M.M., Suhl U.H.: Solving 0-1 integer programming problems arising from large scale planning models. Oper. Res. 33, 803–819 (1985)

    Article  MATH  Google Scholar 

  26. Kallrath J.: Mixed-integer nonlinear programming applications. In: Ciriani, T.A., Gliozzi, S., Johnson, E.L., Tadei, R. (eds) Operational Research in Industry, pp. 42–76. Macmillan, Houndmills (1999)

    Google Scholar 

  27. Kallrath J.: Modeling difficult optimization problems. In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization, pp. 2284–2297. Springer, New York (2008)

    Google Scholar 

  28. Kallrath J.: Combined strategic design and operative planning in the process industry. Comput. Chem. Eng. 33, 1983–1993 (2009)

    Google Scholar 

  29. Kallrath, J.: Solving difficult real world optimization problems: polylithic modeling and solution approaches with GAMS examples. Springer, Germany (2012, in press)

  30. Kallrath J., Maindl T.I.: Real Optimization with SAP-APO. Springer, Heidelberg (2006)

    Google Scholar 

  31. Kalvelagen, E.: Branch-and-bound methods for an MINLP model with semi-continuous variables, discontinued on http://www.gams.com (2003)

  32. Karuppiah R., Grossmann I.E.: A Lagrangean based branch-and-cut algorithm for global optimization of nonconvex mixed-integer nonlinear programs with decomposable structures. J. Glob. Optim. 41, 163–186 (2008). doi:10.1007/s10898-007-9203-8

    Article  MATH  MathSciNet  Google Scholar 

  33. Lin X., Floudas C.A., Kallrath J.: Global solution approaches for nonconvex MINLP problems in product portfolio optimization. J. Glob. Optim. 32, 417–431 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Lohmann, T.: Practical stochastic optimization using algebraic modeling systems. Master’s thesis, Technische Universität Braunschweig (2011)

  35. Lübbecke M.E., Desrosiers J.: Selected topics in column generation. Oper. Res. 53(6), 1007–1023 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Maniezzo V., Stützle T., Voss S.: Hybridizing Metaheuristics and Mathematical Programming, Annals of Information Systems. Springer, Redwoord City (2010)

    Google Scholar 

  37. Maravelias C.T., Grossmann I.E.: A hybrid MILP/CP decomposition approach for the continuous time scheduling of multipurpose batch plants. Comput. Chem. Eng. 28, 1921–1949 (2004)

    Article  Google Scholar 

  38. Misener R., Floudas C.A.: Piecewise-linear approximations of multidimensional functions. J. Optim. Theory Appl. 145, 120–147 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  39. Muñoz, J., Gutierrez, G., Sanchis, A.: Evolutionary techniques in a constraint satisfaction problem: Puzzle Eternity II. In: Proceedings 2009 IEEE Congress on Evolutionary Computation, pp. 2985–2991 (2009)

  40. Pochet Y., Wolsey L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)

    MATH  Google Scholar 

  41. Rebennack S., Kallrath J., Pardalos P.M.: Column enumeration based decomposition techniques for a class of non-convex MINLP problems. J. Glob. Optim. 43, 277–297 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  42. Rebennack S., Nahapetyan A., Pardalos P.M.: Bilinear modeling solution approach for fixed charged network flow problems. Optim. Lett. 3, 347–355 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. Rebennack, S., Oswald, M., Theis, D.O., Seitz, H., Reinelt, G., Pardalos, P.M.: A branch and cut solver for the maximum stable set problem. J. Comb. Optim. doi:10.1007/s10878-008-9175-8 (2011)

  44. Rebennack, S., Reinelt, G., Pardalos, P.M.: A tutorial on branch and cut algorithms for the maximum stable set problem. Int. Trans. Oper. Res. doi:10.1111/j.1475-3995.2011.00805.x (2011)

  45. Roe B., Papageorgiou L.G., Shah N.: A hybrid MILP/CLP algorithm for multipurpose batch process scheduling. Comput. Chem. Eng. 29, 1277–1291 (2005)

    Article  Google Scholar 

  46. Romero C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford (1991)

    MATH  Google Scholar 

  47. Savelsbergh M.W.P.: Preprocessing and probing techniques for mixed integer programming problems. ORSA J. Comput. 6, 445–454 (1994)

    MATH  MathSciNet  Google Scholar 

  48. Savelsbergh M.W.P.: Branch-and-price: integer programming with column generation. In: Floudas, C.A., Pardalos, P. (eds) Encyclopedia of Optimization, pp. 218–221. Kluwer Academic Publishers, Dordrecht (2001)

    Chapter  Google Scholar 

  49. Schniederjans M.J.: Goal Programming: Methodology and Applications. Kluwer Academic Publishers, Boston (1995)

    Book  MATH  Google Scholar 

  50. Schrage L.: Optimization Modeling with LINGO. LINDO Systems, Inc., Chicago (2006)

    Google Scholar 

  51. Till J., Sand G., Engell S., Emmerich M., Schönemann L.: A new hybrid algorithm for solving two-stage stochastic problems by combining evolutionary and mathematical programming methods. In: Puigjaner, L., Espuña, A. (eds) Proceedings of European Symposium on Computer Aided Process Engineering (ESCAPE)-15, pp. 187–192. Elsevier, Dordrecht (2005)

    Google Scholar 

  52. Timpe C.: Solving planning and scheduling problems with combined integer and constraint programming. OR Spectr. 24, 431–448 (2002)

    Article  MATH  Google Scholar 

  53. Vielma J.P., Ahmed S., Nemhauser G.: Mixed-integer models for nonseparable piecewise-linear optimization: unifying framework and extensions. Oper. Res. 53, 303–315 (2009)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Kallrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kallrath, J. Polylithic modeling and solution approaches using algebraic modeling systems. Optim Lett 5, 453–466 (2011). https://doi.org/10.1007/s11590-011-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0320-4

Keywords

Navigation