Skip to main content
Log in

On non-smooth α-invex functions and vector variational-like inequality

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we establish some relationships between vector variational-like inequality and non-smooth vector optimization problems under the assumptions of α-invex non-smooth functions. We identify the vector critical points, the weakly efficient points and the solutions of the weak vector variational-like inequality, under non-smooth pseudo-α-invexity assumptions. These conditions are more general than those of existing ones in the literature. In particular, this work extends an earlier work of Ruiz-Garzon et al. (J Oper Res 157:113–119, 2004) to a wider class of functions, namely the non-smooth pseudo-α-invex functions. Moreover, this work extends an earlier work of Mishra and Noor (J Math Anal Appl 311:78–84, 2005) to non-differentiable case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, G.-Y., Cheng, G.M.: Vector variational inequality and vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 285, pp. 408–416. Springer, Berlin (1998)

  2. Chen G.-Y. and Craven B.D. (1990). A vector variational inequality and optimization over an efficient set. Z. Oper. Res. 34: 1–12

    Article  MATH  MathSciNet  Google Scholar 

  3. Clarke F.H. (1983). Optimization and Nonsmooth Analysis. Wiley-Interscience, New York

    MATH  Google Scholar 

  4. Dafermos S. (1990). Exchange price equilibrium and variational inequalities. Math. Program. 46: 391–402

    Article  MATH  MathSciNet  Google Scholar 

  5. Giannessi F. (1980). Theorems of alternative, quadratic programs and complementarity problems. In: Cottle, R.W., Giannessi, F. and Lions, J.-L. (eds) Variational Inequality and Complementarity Problems., pp 151–186. Wiley, New York

    Google Scholar 

  6. Giannessi, F.: Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 423–432. Kluwer, London (2000)

    MATH  Google Scholar 

  7. Hanson M.A. (1981). On sufficiency of the Kuhn–Tucker conditions. J. Math. Anal. Appl. 80: 545–550

    Article  MATH  MathSciNet  Google Scholar 

  8. Mishra S.K. and Noor M.A. (2005). On vector variational-like inequality problems. J. Math. Anal. Appl. 311: 78–84

    Article  MathSciNet  Google Scholar 

  9. Mohan S.R. and Neogy S.K. (1995). On invex sets and preinvex functions. J. Math. Anal. Appl. 189: 901–908

    Article  MATH  MathSciNet  Google Scholar 

  10. Noor M.A. (1994). Variational-like inequalities. Optimization 30: 323–330

    Article  MATH  MathSciNet  Google Scholar 

  11. Noor M.A. (2004). Generalized mixed quasi-variational-like inequalities. Appl. Math. Comput. 156: 145–158

    Article  MATH  MathSciNet  Google Scholar 

  12. Noor M.A. (2004). On generalized preinvex functions and monotonicities. J. Inequal. Pure Appl. Math. 5: 1–9

    Google Scholar 

  13. Noor M.A. (2005). Invex equilibrium problems. J. Math. Anal. Appl. 302: 463–475

    Article  MATH  MathSciNet  Google Scholar 

  14. Osuna-Gomez R., Rufian-Lizana A. and Ruiz-Canales P. (1998). Invex functions and generalized convexity in multiobjective programming. J. Optim. Theory Appl. 98: 651–661

    Article  MATH  MathSciNet  Google Scholar 

  15. Parida J., Sahoo M. and Kumar A. (1989). A variational-like inequality problems. Bull. Aust. Math. Soc. 39: 225–231

    Article  MATH  MathSciNet  Google Scholar 

  16. Ruiz-Garzon G., Osuna-Gomez R. and Rufian-Lizan A. (2003). Generalized invex monotonicity. Eur. J. Oper. Res. 144: 501–512

    Article  MATH  Google Scholar 

  17. Ruiz-Garzon G., Osuna-Gomez R. and Rufian-Lizan A. (2004). Relationships between vector variational-like inequality and optimization problems. Eur. J. Oper. Res. 157: 113–119

    Article  MATH  Google Scholar 

  18. Weir T. and Mond B. (1988). Preinvex functions in multiobjective optimization. J. Math. Anal. Appl. 136: 29–38

    Article  MATH  MathSciNet  Google Scholar 

  19. Yang X.Q. (1993). Generalized convex functions and vector variational inequalities. J. Optim. Theory Appl. 79: 563–580

    Article  MATH  MathSciNet  Google Scholar 

  20. Yang X.Q. (1997). Vector variational inequality and vector pseudolinear optimization. J. Optim. Theory Appl. 95: 729–734

    Article  MATH  MathSciNet  Google Scholar 

  21. Yang X.Q. and Chen G.-Y. (1992). A class of nonconvex functions and prevariational inequalities. J. Math. Anal. Appl. 169: 359–373

    Article  MATH  MathSciNet  Google Scholar 

  22. Yang X.Q. and Goh C.J. (1997). On vector variational inequalities: application to vector equilibria. J. Optim. Theory Appl. 95: 431–443

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S.K., Wang, S.Y. & Lai, K.K. On non-smooth α-invex functions and vector variational-like inequality. Optimization Letters 2, 91–98 (2008). https://doi.org/10.1007/s11590-007-0045-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-007-0045-6

Keywords

Navigation