Skip to main content
Log in

The fractional Dodson diffusion equation: a new approach

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper, after a brief review of the general theory concerning regularized derivatives and integrals of a function with respect to another function, we provide a peculiar fractional generalization of the \((1+1)\)-dimensional Dodson’s diffusion equation. For the latter we then compute the fundamental solution, which turns out to be expressed in terms of an M-Wright function of two variables. Then, we conclude the paper providing a few interesting results for some nonlinear fractional Dodson-like equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For further details on the M-Wright function, and its applications, we refer the interested reader to a very interesting surveys [21, 23]. From an historical perspective, it is also worth remarking that M-Wright function was first introduced in the occasion of the 7th WASCOM conference, see [19].

References

  1. Almeida, R.: A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 44, 460–481 (2017)

    Article  MathSciNet  Google Scholar 

  2. Almeida, R.: What is the best fractional derivative to fit data? Appl. Anal. Discrete Math. 11(2), 358–368 (2017)

    Article  MathSciNet  Google Scholar 

  3. Colombaro, I., Giusti, A. Mainardi, F.: Wave dispersion in the linearised fractional Korteweg-de Vries equation. WSEAS Trans. Syst. 16, 43–46 (2017) [E-print arXiv:1704.02508]

  4. Colombaro, I., Giusti, A., Mainardi, F.: A class of linear viscoelastic models based on Bessel functions. Meccanica 52, 825–832 (2017)

    Article  MathSciNet  Google Scholar 

  5. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  6. de Oliveira, E.C., Mainardi, F., Vaz, J.: Fractional models of anomalous relaxation based on the Kilbas and Saigo function. Meccanica 49(9), 2049–2060 (2014)

    Article  MathSciNet  Google Scholar 

  7. Dipierro, S., Valdinoci, E., Vespri, V.: Decay estimates for evolutionary equations with fractional time-diffusion (2017). E-print arXiv:1707.08278

  8. Dodson, M.H.: Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 40, 259–274 (1973)

    Article  Google Scholar 

  9. Garra, R., Mainardi, F., Spada, G.: A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos, Solitons Fractals 102, 333–338 (2017)

    Article  MathSciNet  Google Scholar 

  10. Garra, R., Giusti, A., Mainardi, F., Pagnini, G.: Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. 17(2), 424–439 (2014)

    Article  MathSciNet  Google Scholar 

  11. Giusti, A., Colombaro, I.: Prabhakar-like fractional viscoelasticity. Commun. Nonlinear Sci. Numer. Simul. 56, 138–143 (2018)

    Article  MathSciNet  Google Scholar 

  12. Giusti, A.: On infinite order differential operators in fractional viscoelasticity. Fract. Calc. Appl. Anal. 20(4), 854–867 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  Google Scholar 

  14. Hristov, J.: The non-linear Dodson diffusion equation: approximate solutions and beyond with formalistic fractionalization. Math. Nat. Sci. 1, 1–17 (2017)

    Article  Google Scholar 

  15. Hristov, J.: Derivation of the fractional Dodson equation and beyond: transient diffusion with a non-singular memory and exponentially fading-out diffusivity. Progr. Fract. Differ. Appl. 3(4), 1–16 (2017)

    Article  Google Scholar 

  16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  17. Jleli, M., O’Regan, D., Samet, B.: Some fractional integral inequalities involving m-convex functions. Aequ. Math. 91(3), 479–490 (2017)

    Article  MathSciNet  Google Scholar 

  18. Mavko, G., Saxena, N.: Rock-physics models for heterogeneous creeping rocks and viscous fluids. Geophysics 81(4), D427–D440 (2016)

    Article  Google Scholar 

  19. Mainardi, F.: On the initial value problem for the fractional diffusion-wave equation. In: Rionero, S., Ruggeri, T. (eds.) VII International Conference on Waves and Stability in Continuous Media, Bologna, Italy, October 4–9, 1993, pp. 246–251. World Scientific, Singapore (1994)

    Google Scholar 

  20. Mainardi, F., Masina, E., Spada, G.: A generalization of the Becker model in linear viscoelasticity: creep, relaxation and internal friction. E-print arXiv:1707.05188

  21. Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: a tutorial survey. J. Differ. Equ. 2010, Article ID 104505 (2010)

  22. Mainardi, F., Pagnini, G.: The Wright functions as solutions of the time-fractional diffusion equation. Appl. Math. Comput. 141(1), 51–62 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Pagnini, G.: The M-Wright function as a generalization of the Gaussian density for fractional diffusion processes. Fract. Calc. Appl. Anal. 16(2), 436–453 (2013)

    Article  MathSciNet  Google Scholar 

  24. Pagnini, G.: Erdélyi–Kober fractional diffusion. Fract. Calc. Appl. Anal. 15(1), 117–127 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the authors has been carried out in the framework of the activities of the National Group of Mathematical Physics (GNFM, INdAM). Moreover, the work of A.G. has been partially supported by GNFM/INdAM Young Researchers Project 2017 “Analysis of Complex Biological Systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Mainardi.

Additional information

Dedicated to Professor Tommaso Ruggeri on the occasion of his 70th anniversary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garra, R., Giusti, A. & Mainardi, F. The fractional Dodson diffusion equation: a new approach. Ricerche mat 67, 899–909 (2018). https://doi.org/10.1007/s11587-018-0354-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-018-0354-3

Keywords

Mathematics Subject Classification

Navigation