Skip to main content
Log in

Qualitative analysis of the invasion free boundary problem in biofilms

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The work presents the qualitative analysis of the free boundary value problem related to the invasion model for multispecies biofilms. This model is based on the continuum approach for biofilm modeling and consists of a system of nonlinear hyperbolic partial differential equations for microbial species growth and spreading, a system of semilinear elliptic partial differential equations describing the substrate trends and a system of semilinear elliptic partial differential equations accounting for the diffusion and reaction of motile species within the biofilm. The free boundary evolution is regulated by a nonlinear ordinary differential equation. Overall, this leads to a free boundary value problem essentially hyperbolic. By using the method of characteristics, the partial differential equations constituting the invasion model are converted to Volterra integral equations. Then, the fixed point theorem is used for the uniqueness and existence result. The work is completed with numerical simulations describing the invasion of nitrite oxidizing bacteria in a biofilm initially constituted by ammonium oxidizing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Emerenini, B.O., Hense, B.A., Kuttler, C., Eberl, H.J.: A mathematical model of quorum sensing induced biofilm detachment. PloS One 10, e0132385 (2015)

    Article  Google Scholar 

  2. Frederick, M.R., Kuttler, C., Hense, B.A., Eberl, H.J.: A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theor Biol Med Model 8, 1–29 (2011)

    Article  Google Scholar 

  3. Capone, F., De Cataldis, V., De Luca, R.: On the nonlinear stability of an epidemic SEIR reaction-diffusion model. Ric di Mat 62, 161–181 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. De Luca, R.: On the long-time dynamics of nonautonomous predator–prey models with mutual interference. Ric Mat 61, 275–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. D’Acunto, B., Frunzo, L., Klapper, I., Mattei, M.R.: Modeling multispecies biofilms including new bacterial species invasion. Math Biosci 259, 20–26 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wanner, O., Gujer, W.: A multispecies biofilm model. Biotech Bioeng 28, 314–328 (1986)

    Article  Google Scholar 

  7. D’Acunto, B., Frunzo, L.: Qualitative analysis and simulations of a free boundary problem for multispecies biofilm models. Math Comput Model 53, 1596–1606 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. D’Acunto, B., Frunzo, L.: Free boundary problem for an initial cell layer in multispecies biofilm formation. Appl Math Lett 25, 20–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Acunto, B., Esposito, G., Frunzo, L., Mattei, M.R., Pirozzi, F.: Analysis and simulations of the initial phase in multispecies biofilm formation. Commun Appl Ind Math 4, 1–20 (2013)

    MathSciNet  MATH  Google Scholar 

  10. D’Acunto, B., Frunzo, L., Mattei, M.R.: Qualitative analysis of the moving boundary problem for a biofilm reactor model. J Math Anal Appl 438, 474–491 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’Acunto, B., Esposito, G., Frunzo, L., Pirozzi, F.: Dynamic modeling of sulfate reducing biofilms. Comput Math Appl 62, 2601–2608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Mattei, M.R., D’Acunto, B., Esposito, G., Frunzo, L., Pirozzi, F.: Mathematical modeling of competition and coexistence of sulfate-reducing bacteria, acetogens, and methanogens in multispecies biofilms. Desalination Water Treat 55, 740–748 (2015)

    Article  Google Scholar 

  13. D’Acunto, B., Esposito, G., Frunzo, L., Mattei, M.R., Pirozzi, F.: Mathematical modeling of heavy metal biosorption in multispecies biofilms. J Environ Eng (2015). doi:10.1061/(ASCE)EE.1943-7870.0001052

  14. Mattei, M.R., Frunzo, L., D’Acunto, B., Esposito, G., Pirozzi, F.: Modelling microbial population dynamics in multispecies biofilms including Anammox bacteria. Ecol Model 304, 44–58 (2015)

    Article  Google Scholar 

  15. Mobarry, B.K., Wagner, M., Urbain, V., Rittmann, B.E., Stahl, D.A.: Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microbiol 62, 2156–2162 (1996)

    Google Scholar 

  16. Wyffels, S., Van Hulle, S.W., Boeckx, P., Volcke, E.I., Cleemput, O.V., Vanrolleghem, P.A., Verstraete, W.: Modeling and simulation of oxygen-limited partial nitritation in a membrane-assisted bioreactor (MBR). Biotechnol Bioeng 86, 531–542 (2004)

    Article  Google Scholar 

  17. Henze, M., Gujer, W., van Loosdrecht, M.: Sludge models ASM1, ASM2, ASM2d and ASM3, Scientific and technical report no. 9, IWA Publishing, London (2000)

  18. Hao, X., Heijnen, J.J., van Loosdrecht, M.: Sensitivity analysis of a biofilm model describing a one-stage completely autotrophic nitrogen removal (CANON) process. Biotechnol Bioeng 77, 266–277 (2002)

    Article  Google Scholar 

  19. Metcalf, E.: Wastewater engineering, treatment and reuse. McGraw-Hill, New York (2003)

    Google Scholar 

  20. Satoh, H., Ono, H., Rulin, B., Kamo, J., Okabe, S., Fukushi, K.I.: Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Res 38, 1633–1641 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Frunzo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frunzo, L., Mattei, M.R. Qualitative analysis of the invasion free boundary problem in biofilms. Ricerche mat 66, 171–188 (2017). https://doi.org/10.1007/s11587-016-0295-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0295-7

Keywords

Navigation