Skip to main content
Log in

On exact solutions for quantum particles with spin S = 0, 1/2, 1 and de Sitter event horizon

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

Exact wave solutions for particles with spin 0, 1/2 and 1 in the static coordinates of the de Sitter space–time model are examined in detail. Firstly, for scalar particle, two pairs of linearly independent solutions are specified explicitly: running and standing waves. A known algorithm for calculation of the reflection coefficient \({R_{\epsilon j}}\) on the background of the de Sitter space–time model is analyzed. It is shown that the determination of \({R_{\epsilon j}}\) requires an additional constrain on quantum numbers \({\epsilon \rho / \hbar c \gg j}\), where ρ is a curvature radius. When taken into account of this condition, the \({R_{\epsilon j}}\) vanishes identically. It is claimed that the calculation of the reflection coefficient \({R_{\epsilon j}}\) is not required at all because there is no barrier in an effective potential curve on the background of the de Sitter space–time. The same conclusion holds for arbitrary particles with higher spins, it is demonstrated explicitly with the help of exact solutions for electromagnetic and Dirac fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dirac P.A.M.: The electron wave equation in the de Sitter space. Ann. Math. 36, 657–669 (1935)

    MathSciNet  Google Scholar 

  2. Dirac P.A.M.: Wave equations in conformal space. Ann. Math. 37, 429–442 (1936)

    MathSciNet  Google Scholar 

  3. Schrödinger E.: The proper vibrations of the expanding universe. Physica 6, 899–912 (1939)

    MathSciNet  MATH  Google Scholar 

  4. Schrödinger E.: General theory of relativity and wave mechanics. Wiss. Natuurkund. 10, 2–9 (1940)

    Google Scholar 

  5. Lubanski J.K., Rosenfeld L.: Sur la representation des champs mesoniques dans l’éspace à sinq dimension. Physica 9, 117 (1942)

    MathSciNet  MATH  Google Scholar 

  6. Goto K.: Wave equations in de Sitter space. Prog. Theor. Phys. 6, 1013–1014 (1951)

    MathSciNet  MATH  Google Scholar 

  7. Ikeda M.: On a five-dimensional representation of the electromagnetic and electron field equations in a curved space-time. Prog. Theor. Phys. 10, 483–498 (1953)

    MATH  Google Scholar 

  8. Nachtmann O.: Quantum theory in de-Sitter space. Commun. Math. Phys. 6, 1–16 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Chernikov N.A., Tagirov E.A.: Quantum theory of scalar field in de Sitter space-time. Ann. Inst. Henri Poincare IX, 109–141 (1968)

    MathSciNet  Google Scholar 

  10. Geheniau J., Schomblond Ch.: Functions de Green dans l’Univers de de Sitter. Bull. Cl. Sci. V. Ser. Acad. R. Belg. 54, 1147–1157 (1968)

    MathSciNet  Google Scholar 

  11. Börner G., Dürr H.P.: Classical and quantum theory in de Sitter space. Nuovo Cim. A 64, 669–713 (1969)

    MATH  Google Scholar 

  12. Tugov I.I.: Conformal covariance and invariant formulation of scalar wave equations. Ann. Inst. Henri Poincaré A 11, 207–220 (1969)

    MathSciNet  Google Scholar 

  13. Fushchych W.L., Krivsky I.Yu.: On representations of the inhomogeneous de Sitter group and equations in five-dimensional Minkowski space. Nucl. Phys. B 14, 573–585 (1969)

    Google Scholar 

  14. Chevalier M.: L’équation de Kirchjgoff généralisée. Ann. Inst. Henri Poincaré A 12, 71–115 (1970)

    MathSciNet  MATH  Google Scholar 

  15. Castagnino M.: Champs de spin entier dans l’espace-temps de Sitter. Ann. Inst. Henri Poincaré A 13, 263–270 (1970)

    MathSciNet  Google Scholar 

  16. Castagnino M.: Champs spinoriels en Relativité générale; le cas particulier de léspace-temps de de Sitter et les équations d’ond pour les spins éléves. Ann. Inst. Henri Poincaré A 16, 293–341 (1972)

    MathSciNet  Google Scholar 

  17. Vidal A.: On the consistency of wave equations in de Sitter space. Notas Fis. 16, 8 (1970)

    Google Scholar 

  18. Adler S.L.: Massless, euclidean quantum electrodinamics on the 5-dimensional unit hypersphere. Phys. Rev. D 6, 3445–3461 (1972)

    MathSciNet  Google Scholar 

  19. Schnirman E., Oliveira C.G.: Conformal invariance of the equations of motion in curved spaces. Ann. Inst. Henri Poincaré A 17, 379–397 (1972)

    MathSciNet  Google Scholar 

  20. Tagirov E.A.: Consequences of field quantization in de Sitter type cosmological models. Ann. Phys. 76, 561–579 (1973)

    Google Scholar 

  21. Riordan F.: Solutions of the Dirac equation in finite de Sitter space. Nuovo Cim. B 20, 309–325 (1974)

    MathSciNet  Google Scholar 

  22. Pestov F.B., Chernikov N.A., Shavoxina N.S.: Electrodynamical equations in spherical world. Teor. Mat. Fiz. 25, 327–334 (1975)

    Google Scholar 

  23. Candelas P., Raine D.J.: General-relativistic quantum field theory: an exactly soluble model. Phys. Rev. D 12, 965–974 (1975)

    Google Scholar 

  24. Schomblond Ch., Spindel P.: Propagateurs des champs spinoriels et vectoriels dans l’univers de de Sitter. Bull. Cl. Sci. V. Ser. Acad. R. Belg. LXII, 124 (1976)

    MathSciNet  Google Scholar 

  25. Schomblond Ch., Spindel P.: Conditions d’unicite pour le propagateur Δ1(x, y) du champ scalaire dans l’univers de de Sitter. Ann. Inst. Henri Poincare XXV, 67–78 (1976)

    MathSciNet  Google Scholar 

  26. Dowker J.S., Critchley R.: Scalar effective Lagrangian in de Sitter space. Phys. Rev. D 13, 224–234 (1976)

    MathSciNet  Google Scholar 

  27. Avis S.J., Isham C.J., Storey D.: Quantum field theory in anti-de Sitter space-time. Phys. Rev. D 18, 3565 (1978)

    MathSciNet  Google Scholar 

  28. Brugarino T.: de Sitter-invariant field equations. Ann. Inst. Henri Poincaré A 32, 277–282 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Fang J., Fronsdal C.: Massless, half-integer-spon fields in de Sitter space. Phys. Rev. D 22, 1361–1367 (1980)

    MathSciNet  Google Scholar 

  30. Angelopoulos E., Flato M., Fronsdal C., Sternheimer D.: Massless particles, conformal group, and de Sitter universe. Phys. Rev. D 23, 1278–1289 (1981)

    MathSciNet  Google Scholar 

  31. Burges C.J.C: The de Sitter vacuum. Nucl. Phys. B 247, 533–543 (1984)

    MathSciNet  Google Scholar 

  32. Deser S., Nepomechie R.I.: Gauge invariance versus masslessness in de Sitter space. Ann. Phys. 154, 396–420 (1984)

    MathSciNet  Google Scholar 

  33. Dullemond C., van Beveren E.: Scalar field propagators in anti-de Sitter spacetime. J. Math. Phys. 26, 2050–2058 (1985)

    MathSciNet  Google Scholar 

  34. Gazeau J.P.: Gauge fixing and Gupta-Bleuler triplet in de Sitter QED. J. Math. Phys. 26, 1847–1854 (1985)

    MathSciNet  Google Scholar 

  35. Allen B.: Vacuum states in de Sitter space. Phys. Rev. D 32, 3136–3149 (1985)

    MathSciNet  Google Scholar 

  36. Flato M., Fronsdal C., Gazeau J.P.: Masslessness and light-cone propagation in 3 + 2 de Sitter and 2 + 1 Minkowski spaces. Phys. Rev. D 33, 415–420 (1986)

    MathSciNet  Google Scholar 

  37. Allen B., Jacobson T.: Vector two-point functions in maximally symmetric space. Commun. Math. Phys. 103, 669–692 (1986)

    MathSciNet  MATH  Google Scholar 

  38. Allen B., Folacci A.: The massless minimally coupled scalar field in de Sitter space. Phys. Rev. D 35, 3771–3778 (1987)

    MathSciNet  Google Scholar 

  39. Sánchez N.: Quantum field theory and elliptic interpretation of de Sitter space-time. Nucl. Phys. B 294, 1111–1137 (1987)

    Google Scholar 

  40. Pathinayake C., Vilenkin A., Allen B.: Massless scalar and antisymmetric tensor fields in de Sitter space. Phys. Rev. D 37, 2872–2877 (1988)

    MathSciNet  Google Scholar 

  41. Gazeau J-P., Hans M.: Integral-spin fields on (3 + 2)-de Sitter space. J. Math. Phys. 29, 2533–2552 (1988)

    MathSciNet  MATH  Google Scholar 

  42. Bros J., Gazeau J.P, Moschella U.: Quantum field theory in the de Sitter universe. Phys. Rev. Lett. 73, 1746 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Takook, M.V.: Théorie quantique des champs pour des systèmes élémentaires “massifs” et de “masse nulle” sur l’espace-temps de de Sitter. Thèse de l’Université Paris VI (1997)

  44. Pol’shin, S.A.: Group theoretical examination of the relativistic wave equations on curved spaces. I. Basic principles. http://arxiv.org/abs/gr-qc/9803091

  45. Pol’shin, S.A.: Group theoretical examination of the relativistic wave equations on curved spaces. II. de Sitter and anti-de Sitter spaces. http://arxiv.org/abs/gr-qc/9803092

  46. Pol’shin, S.A.: Group theoretical examination of the relativistic wave equations on curved spaces. III. Real reducible spaces. http://arxiv.org/abs/gr-qc/9809011

  47. Gazeau J.-P., Takook M.V.: “Massive” vector field in de Sitter space. J. Math. Phys. 41, 5920–5933 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Takook, M.V.: Spin 1/2 field theory in the de Sitter space-time. http://arxiv.org/abs/gr-qc/0005077

  49. Deser, S., Waldron, A.: Partial masslessness of higher spins in (A)dS. Nucl. Phys. B 607, 577–604 (2001). http://arxiv.org/abs/hep-th/0103198

  50. Deser, S., Waldron, A.: Null propagation of partially massless higher spins in (A)dS and cosmological constant speculations. Phys. Lett. B 513, 137 (2001). http://arxiv.org/abs/hep-th/0105181

  51. Spradlin, M., Strominger, A., Volovich, A.: Les Houches lectures on de Sitter space. http://arxiv.org/abs/hep-th/0110007

  52. Cai, R.G., Myung, Y.S., Zhang, Y.Z.: Check of the mass bound conjecture in de Sitter space. Phys. Rev. D 65, 084019 (2002). http://arxiv.org/abs/hep-th/0110234

  53. Garidi T., Huguet E., Renaud J.: de Sitter waves and the zero curvature limit comments. Phys. Rev. D 67, 124028 (2003)

    MathSciNet  Google Scholar 

  54. Rouhani S., Takook M.V.: Abelian gauge theory in de Sitter space. Phys. Lett. A 20, 2387–2396 (2005)

    MathSciNet  MATH  Google Scholar 

  55. Behroozi, S., Rouhani, S., Takook, M.V., Tanhayi, M.R.: Conformally invariant wave-equations and massless fields in de Sitter spacetime. Phys. Rev. D 74, 124014 (2006). http://arxiv.org/abs/gr-qc/0512105

  56. Huguet E., Queva J., Renaud J.: Conformally related massless fields in dS, AdS and Minkowski spaces. Phys. Rev. D 73, 084025 (2006)

    MathSciNet  Google Scholar 

  57. Garidi, T., Gazeau, J.P., Rouhani, S., Takook, M.V.: “Massless” vector field in de Sitter universe. J. Math. Phys. 49, 032501 (2008). http://arxiv.org/abs/gr-qc/0608004

    Google Scholar 

  58. Huguet E., Queva J., Renaud J.: Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space. Phys. Rev. D 77, 044025 (2008)

    MathSciNet  Google Scholar 

  59. Dehghani M., Rouhani S., Takook M.V., Tanhayi M.R.: Conformally invariant “massless” spin-2 field in de Sitter universe. Phys. Rev. D 77, 064028 (2008)

    MathSciNet  Google Scholar 

  60. Moradi S., Rouhani S., Takook M.V.: Discrete symmetries for spinor field in de Sitter space. Phys. Lett. B 613, 74–82 (2005)

    MathSciNet  Google Scholar 

  61. Faci S., Huguet E., Queva J., Renaud J.: Conformally covariant quantization of the Maxwell field in de Sitter space. Phys. Rev. D 80, 124005 (2009)

    MathSciNet  Google Scholar 

  62. Lohiya D., Panchapakesan N.: Massless scalar field in a de Sitter universe and its thermal flux. J. Phys. A 11, 1963–1968 (1978)

    Google Scholar 

  63. Lohiya D., Panchapakesan N.: Particle emission in the de Sitter universe for massless fields with spin. J. Phys. A 12, 533–539 (1979)

    Google Scholar 

  64. Khanal U., Panchapakesan N.: Perturbation of the de Sitter-Schwarzchild universe with massless fields. Phys. Rev. D 24, 829–834 (1981)

    MathSciNet  Google Scholar 

  65. Khanal U., Panchapakesan N.: Production of massless particles in the de Sitter–Schwarzschild universe. Phys. Rev. D 24, 835–838 (1981)

    MathSciNet  Google Scholar 

  66. Khanal U.: Rotating black hole in asymptotic de Sitter space: Perturbation of the space-time with spin fields. Phys. Rev. D 28, 1291–1297 (1983)

    MathSciNet  Google Scholar 

  67. Khanal U.: Further investigations of the Kerr-de Sitter space. Phys. Rev. D 32, 879–883 (1985)

    MathSciNet  Google Scholar 

  68. Otchik V.S.: On the Hawking radiation of spin 1/2 particles in the de Sitter space-time. Class. Quantum Grav. 2, 539–543 (1985)

    MathSciNet  Google Scholar 

  69. Motolla F.: Particle creation in de Sitter space. Phys. Rev. D 31, 754–766 (1985)

    MathSciNet  Google Scholar 

  70. Bogush A.A., Otchik V.S., Red’kov V.M.: Vector field in de Sitter space. Vesti AN BSSR 1, 58–62 (1986)

    Google Scholar 

  71. Mishima T., Nakayama A.: Particle production in de Sitter spacetime. Prog. Theor. Phys. 77, 218–222 (1987)

    Google Scholar 

  72. Polarski D.: The scalar wave equation on static de Sitter and anti-de Sitter spaces. Class. Quantum Grav. 6, 893–900 (1989)

    MathSciNet  MATH  Google Scholar 

  73. Suzuki H., Takasugi E.: Absorption probability of de Sitter horizon for massless fields with spin. Mod. Phys. Lett. A 11, 431–436 (1996)

    MathSciNet  Google Scholar 

  74. Suzuki H., Takasugi E., Umetsu H.: Perturbations of Kerr-de Sitter black hole and Heun’s equations. Prog. Theor. Phys. 100, 491–505 (1998)

    MathSciNet  Google Scholar 

  75. Suzuki, H., Takasugi, E., Umetsu, H.: Analytic solutions of Teukolsky equation in Kerr-de Sitter and Kerr-Newman-de Sitter geometries. Prog. Theor. Phys. 102, 253–272 (1999). http://arxiv.org/abs/gr-qc/9905040

  76. Suzuki, H., Takasugi, E., Umetsu, H.: Absorption rate of the Kerr-de Sitter black hole and the Kerr-Newman–de Sitter black hole. Prog. Theor. Phys. 103, 723–731 (2000). http://arxiv.org/abs/gr-qc/9911079

  77. Hawking S.W.: Black holes in general relativity. Commun. Math. Phys. 25, 152–166 (1972)

    MathSciNet  Google Scholar 

  78. Hawking S.W.: Black hole explositions?. Nature 248(5443), 30–31 (1974)

    Google Scholar 

  79. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    MathSciNet  Google Scholar 

  80. Hawking S.W.: Black holes and thermodynamics. Phys. Rev. D 13, 191–197 (1976)

    MathSciNet  Google Scholar 

  81. Starobinskii A.A.: Amplification of waves during reflection from a rotating “black hole”. Sov. Phys. JETP 37(1), 28 (1973)

    Google Scholar 

  82. Hawking S.W., Gibbons G.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738–2751 (1977)

    MathSciNet  Google Scholar 

  83. Starobinskii A.A., Churilov S.M.: Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Sov. Phys. JETP 38, 1 (1973)

    Google Scholar 

  84. Teukolsky S.A.: Perturbations of a rotating black hole. I: fundamental equations for gravitational, electromagnetic, and neutrino fields perturbations. Astrophys. J. 185, 635–647 (1973)

    MathSciNet  Google Scholar 

  85. Press W.H., Teukolsky S.A.: Perturbations of a rotating black hole. II: dynamical stability of the Kerr metric. Astrophys. J. 185, 649 (1973)

    MathSciNet  Google Scholar 

  86. Teukolsky S.A., Press W.H.: Perturbations of a rotating black hole. III: interaction of the hole with gravitational and electromagnetic radiaation. Astrophys. J. 193, 443–461 (1974)

    Google Scholar 

  87. Bardeen J.M., Press W.H.: Radiation fields in the Schwarzschild background. J. Math. Phys. 14, 7–19 (1973)

    MathSciNet  Google Scholar 

  88. Bardeen J.M., Carter B., Hawking S.W.: The four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    MathSciNet  MATH  Google Scholar 

  89. Unruh W.G.: Second quantization in the Kerr metric. Phys. Rev. D 10, 3194–3205 (1974)

    Google Scholar 

  90. Fabbri R.: Scattering and absorption of electromagnetic waves by a Schwatzshild black hole. Phys. Rev. D 12, 933–942 (1975)

    Google Scholar 

  91. Wald R.M.: On particle creation by black holes. Commun. Math. Phys. 45, 9–34 (1975)

    MathSciNet  Google Scholar 

  92. Boulware D.G.: Spin 1/2 quantum field theory in Schwarzschild space. Phys. Rev. D 212, 350–367 (1975)

    MathSciNet  Google Scholar 

  93. Page D.N.: Particle emission rates from a black hole: massless particles from an uncharged, nonrotating hole. Phys. Rev. D 13, 198–206 (1976)

    Google Scholar 

  94. Page D.N.: Particle emission rates from a black hole. II: massless particles from a rotating hole. Phys. Rev. D 14, 3260–3273 (1976)

    Google Scholar 

  95. Page D.N.: Dirac equation around a charged rotating black hole. Phys. Rev. D 14, 1509–1510 (1976)

    Google Scholar 

  96. Chandrasekhar S., Detweiler S.: On the refflexion and transmission of neutrino waves by a Kerr black hole. Proc. R. Soc. Lond. A 352(1670), 325–338 (1977)

    Google Scholar 

  97. Matzner R.A., Ryan M.P. Jr: Low-frequency limit of gravitational scattering. Phys. Rev. D 16, 1636–1642 (1977)

    MathSciNet  Google Scholar 

  98. Güven R.: Wave mechanics of electrons in Kerr geometry. Phys. Rev. D 16, 1706–1711 (1977)

    Google Scholar 

  99. Bekenstein J.D., Meisels A.: Einstein A and B coefficients for black hole. Phys. Rev. D 15, 2775–2781 (1977)

    Google Scholar 

  100. Martellini M., Treves A.: Absence of superradiance of a Dirac field in Kerr background. Phys. Rev. D 15, 3060–3061 (1977)

    Google Scholar 

  101. Iyer B.R., Kumar A.: Note on the abcence of massive fermion superradiance from a Kerr black hole. Phys. Rev. D 18, 4799–4801 (1978)

    Google Scholar 

  102. Hawking S., Page D.: Thermodynamics of black holes in anti-de Sitter space. Commun. Math. Phys. 87, 577–588 (1983)

    MathSciNet  Google Scholar 

  103. Chandrasekhar S.: The Mathematical Theory of Black Holes. Oxford University Press, Oxford (1983)

    MATH  Google Scholar 

  104. Otchik, V.S., Red’kov, V.M.: Quantum Mechanical Kepler Problem in Spaces of Constant Curvature. Institute of Physics, NANB, Minsk (1986). Preprint no. 298

  105. Akhmedova V., Pilling T., de Gill A., Singleton D.: Temporal contribution to gravitational WLB-like calculations. Phys. Lett. B 666, 269–271 (2008)

    MathSciNet  Google Scholar 

  106. Red’kov, V.M., Bogush, A.A., Tokarevskaya, N.G., Spix, G.J.: Majorana-Oppengeimer approach to Maxwell electrodynamics in Riemannian space-time. In: Proceedings of 14th International School and Conference “Foundation and Advances in Nonlinear Science”, 22–25 September, Minsk, Belarus, pp. 20–49 (2008). http://arxiv.org/abs/0905.0261

  107. Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell equations in complex form of Majorana-Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ric. Mat. 59(1), 59–96 (2010). doi:10.1007/s11587-009-0067-8

    MathSciNet  MATH  Google Scholar 

  108. Red’kov V.M.: Fields in Riemannian space and the Lorentz group. Belorussian Science, Minsk (2009)

    Google Scholar 

  109. Wigner, E.: Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen (Some consequences from Schödinger’s theory for term structures). Z. Phys. 43, 601–623 (1927). Reprinted in: Biedenharn, L.C., van Dam, H.: Quantum Theory of Angular Momentum. Academic Press, New York (1965)

  110. Varshalovich D.A., Moskalev A.N., Hersonskiy V.K.: Quantum Theory of Angular Moment. Nauka, Leningrad (1975)

    Google Scholar 

  111. Red’kov, V.M.: Generally relativistical Tetrode–Weyl–Fock–Ivanenko formalism and behavior of quantum-mechanical particles of spin 1/2 in the Abelian monopole field. http://arxiv.org/abs/quant-ph/9812002

  112. Red’kov, V.M.: Generally relativistical Daffin–Kemmer formalism and behavior of quantum-mechanical particle of spin 1 in the Abelian monopole field. http://arxiv.org/abs/quant-ph/9812007

  113. Red’kov, V.M.: The doublet of Dirac fermions in the field of the non-Abelian monopole, isotopic chiral symmetry, and parity selection rules. http://arxiv.org/abs/quant-ph/9901011

  114. Red’kov, V.M.: On intrinsic structure of wave functions of fermion triplet in external monopole field. http://arxiv.org/abs/quant-ph/9902034

  115. Dray T.J.: The relationship between monopole harmonics and spin-weighted spherical harmonics. J. Math. Phys. 26, 1030–1033 (1985)

    MathSciNet  MATH  Google Scholar 

  116. Dray T.J.: A unified treatment of Wigner D functions, spin-weighted spherical harmonics, and monopole harmonics. J. Math. Phys. 27, 781–792 (1986)

    MathSciNet  MATH  Google Scholar 

  117. Krolikowski W., Turski A.: Relativistic two-body equation for one Dirac and one Duffin-Kemmer-Petiau particle, consistent with the hole theory. Acta Phys. Pol. B 17, 75–81 (1986)

    MathSciNet  Google Scholar 

  118. Turski A.: Method of separating the angular coordinates in two-body wave equation with spin. Acta Phys. Pol. B 17, 337–346 (1986)

    Google Scholar 

  119. Schrödinger E.: The ambiguity of the wave function. Ann. Phys. 32, 49–55 (1938)

    Google Scholar 

  120. Pauli W.: Über die Kriterium für Ein-oder Zweiwertigkeit der Eigenfunktionen in der Wellenmechanik. Helv. Phys. Acta 1939(12), 147–168 (1939)

    Google Scholar 

  121. Goldberg J.N., Macfarlane A.J., Newman E.T., Rohrlich F., Sudarshan E.C.G.: Spin-s spherical harmonics and/∂. J. Math. Phys. 8, 2155–2161 (1967)

    MathSciNet  MATH  Google Scholar 

  122. Penrose R., Rindler W.: Spinors and Space-Time. Two-Spinor Calculus and Relativistic Fields, vol. I. Cambridge University Press, Cambridge (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Red’kov.

Additional information

Communicated by Editor in Chief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Red’kov, V.M., Ovsiyuk, E.M. On exact solutions for quantum particles with spin S = 0, 1/2, 1 and de Sitter event horizon. Ricerche mat. 60, 57–88 (2011). https://doi.org/10.1007/s11587-010-0096-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-010-0096-3

Keywords

Mathematics Subject Classification (2000)

Navigation