Skip to main content
Log in

Maxwell equations in complex form, squaring procedure and separating the variables

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

The Riemann–Silberstein–Majorana–Oppenheimer complex approach to the Maxwell electrodynamics is investigated within the matrix formalism. Within the squaring procedure we construct four types of formal solutions of the Maxwell equations on the base of scalar D’Alembert solutions. General problem of separating physical electromagnetic solutions in the linear space λ0Ψ0 + λ1Ψ1 + λ2Ψ2 + λ3Ψ3 is investigated, the Maxwell equations reduce to a new form including parameters λ a . Several particular cases, plane waves and cylindrical waves, are considered in detail. Possible extension of the technique to a curved space–time models is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lorentz H.A.: Electromagnetic phenomena in a system moving with any velocity less than that of light. Proc. R. Acad. Amsterdam 6, 809–831 (1904)

    Google Scholar 

  2. Poincaré H.: Sur la dynamique de l’électron. C. R. Acad. Sci. Paris 140, 1504–1508 (1905)

    MATH  Google Scholar 

  3. Poincaré H.: Rendiconti del Circolo Matematico di Palermo. C. R. Acad. Sci. Paris 21, 129–175 (1906)

    MATH  Google Scholar 

  4. Einstein A.: Zur Elektrodynamik der bewegten Körper. Ann. Phys. 17, 891–921 (1905)

    Article  Google Scholar 

  5. Minkowski H.: Die Grundlagen für die electromagnetischen Vorgänge in bewegten Kërpern. Nachrichten von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 53 –111 (1908); reprint in Math. Ann. 68, 472–525 (1910)

    MathSciNet  MATH  Google Scholar 

  6. Silberstein L.: Elektromagnetische Grundgleichungen in bivectorieller Behandlung. Ann. Phys. (Leiptzig) 22, 579–586 (1907)

    Article  Google Scholar 

  7. Silberstein L.: Nachtrag zur Abhandlung Über “elektromagnetische Grundgleichungen in bivektorieller Behandlung”. Ann. Phys. 24, 783–784 (1907)

    Article  Google Scholar 

  8. Silberstein L.: The Theory of Relativity. Macmillan, London (1914)

    MATH  Google Scholar 

  9. Weber, H.: Die partiellen Differential-Gleichungen der mathematischen Physik nach Riemann’s Vorlesungen. Friedrich Vieweg und Sohn. Braunschweig. p. 348 (1901)

  10. Marcolongo R.: Les transformations de Lorentz et les équations de l’électrodynamique. Ann. Fac. Sci. Toulouse 4, 429–468 (1912)

    MathSciNet  Google Scholar 

  11. Bateman H.: The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwells Equations. Cambridge University Press, Cambridge (1915)

    Google Scholar 

  12. Lanczos, K.: Die Funktionentheoretischen Beziehungen der Maxwellschen Aethergleichungen—Ein Beitrag zur Relativitätsund Elektronentheorie. Verlagsbuchhandlung Josef Nëmeth. Budapest (1919)

  13. Dirac P.A.M.: The quantum theory of the electron. Proc. R. Soc. A 117, 610–624 (1928)

    Article  Google Scholar 

  14. Dirac P.A.M.: The quantum theory of the electron. Part II. Proc. R. Soc. A 118, 351–361 (1928)

    Article  Google Scholar 

  15. Möglich F.: Zur Quantentheorie des rotierenden Elektrons. Zeit. Phys. 48, 852–867 (1928)

    Article  Google Scholar 

  16. Ivanenko D., Landau L.: Zur theorie des magnetischen electrons. Zeit. Phys. 48, 340–348 (1928)

    Article  Google Scholar 

  17. Neumann J.: Einige Bemerkungen zur Diracschen Theorie des relativistischen Drehelectrons. Zeit. Phys. 48, 868–881 (1929)

    Article  Google Scholar 

  18. van der Waerden, B.L.: Spinoranalyse. Nachr. Akad. Wiss. Gottingen. Math. Phys. Kl. 100–109 (1929)

  19. Juvet G.: Opérateurs de Dirac et équations de Maxwell. Commun. Math. Helv. 2, 225–235 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  20. Laporte O., Uhlenbeck G.E.: Application of spinor analysis to the Maxwell and Dirac equations. Phys. Rev. 37, 1380–1397 (1931)

    Article  MATH  Google Scholar 

  21. Oppenheimer J.R.: Note on light quanta and the electromagnetic field. Phys. Rev. 38, 725–746 (1931)

    Article  MATH  Google Scholar 

  22. Majorana, E.: Scientific Papers, unpublished, deposited at the “Domus Galileana”. Pisa, quaderno 2, p.101/1; 3, p. 11, 160; 15, p. 16;17, p. 83, 159 Juvet G., Schidlof A.: . Bull. Soc. Sci. Nat. Neuchâtel. 57, 127–141 (1932)

  23. Bialynicki-Birula I.: On the wave function of the photon. Acta Phys. Polon. 86, 97–116 (1994)

    Google Scholar 

  24. Red’kov V.M.: Fields in Riemannian space and Lorentz group. Belarussian Science, Minsk (2009)

    Google Scholar 

  25. Bogush A.A., Krylov G.G., Ovsiyuk E.M., Red’kov V.M.: Maxwell equations in complex form of Majorana–Oppenheimer, solutions with cylindric symmetry in Riemann S 3 and Lobachevsky H 3 spaces. Ricerche di matematica 59(1), 59–96 (2010). doi:10.1007/s11587-009-0067-8

    Article  MathSciNet  MATH  Google Scholar 

  26. Red’kov, V.M., Bogush, A.A., Tokarevskaya, N.G., Spix, G.J.: Majorana–Oppengeimer approach to Maxwell electrodynamics in Riemannian space–time, 32 pp. arXiv:0905.0261 [math-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Red’kov.

Additional information

Communicated by Editor in Chief.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kisel, V.V., Ovsiyuk, E.M., Red’kov, V.M. et al. Maxwell equations in complex form, squaring procedure and separating the variables. Ricerche mat. 60, 1–14 (2011). https://doi.org/10.1007/s11587-010-0092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-010-0092-7

Keywords

Mathematics Subject Classification (2000)

Navigation