Skip to main content

Advertisement

Log in

Application of transition metal compounds in cathode materials for lithium-sulfur battery

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The lithium-sulfur battery has high theoretical specific capacity (1675 mAh g−1) and energy density (2567 Wh kg−1), and is considered to be one of the most promising high-energy–density storage battery systems. However, the polysulfides produced during the charging and discharging process of the lithium-sulfur battery will migrate back and forth between the positive and negative electrodes of the battery causing a “shuttle effect,” which leads to the decline of the battery’s cycle stability and reduction of the utilization rate of active substances. Transition metal compounds are common materials and have always played an active role in the capture and catalysis of polysulfides. This paper reviews the recent progress of research on modifying cathode materials by introducing transition metal compounds into lithium-sulfur battery and discusses the future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Yuan W, Qiu ZQ, Wang C, Yuan YH, Yang Y, Zhang XQ, Ye YT, Tang Y (2020) Design and interface optimization of a sandwich-structured cathode for lithium-sulfur batteries. Chem Eng J 381:122648

    Article  CAS  Google Scholar 

  2. Dong MX, Wang ZX, Li XH, Guo HJ, Wang JX, Yan GC (2020) Vital effect of sufficient vulcanization on the properties of Ni-Co-S/graphene composites for supercapacitor. Chem Eng Sci 221:115709

    Article  CAS  Google Scholar 

  3. Yk Xi, Angulakshmi N, Zhang BY, Tian XH, Tang ZH, Xie PF, Chen GZ, Zhou YK (2020) A Co9S8 microsphere and N-doped carbon nanotube composite host material for lithium-sulfur batteries. J Alloy Compd 826:154201

    Article  Google Scholar 

  4. Liu TF, Tong CJ, Wang B, Liu LM, Zhang SQ, Lin Z, Wang DL, Lu J (2019) Trifunctional electrode additive for high active material content and volumetric lithium-ion electrode densities. Adv Energy Mater 9:1803390

    Article  Google Scholar 

  5. Liu TF, Zhang YP, Chen C, Lin Z, Zhang SQ, Lu J (2019) Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat Commun 10:1965

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liu YY, Zhang Y, Liu Y, Zhu J, Ge Z, Li ZJ, Chen YS (2021) Super heating/cooling rate enabled by microwave shock on polymeric graphene foam for high performance lithium-sulfur batteries. Carbon 173:809–816

    Article  CAS  Google Scholar 

  7. Zhao M, Li BQ, Chen X, Xie J, Yuan H, Huang JQ (2020) Redox comediation with organopolysulfides in working lithium-sulfur batteries. Chem 6:3297–3311

    Article  CAS  Google Scholar 

  8. Gao MY, Tang ZH, Wu MR, Chen JL, Xue YC, Guo XM, Liu YJ, Kong QH, Zhang JH (2021) Self-supporting N, P doped Si/CNTs/CNFs composites with fiber network for high-performance lithium-ion batteries. J Alloy Compd 857:157554

    Article  CAS  Google Scholar 

  9. Zhao M, Peng YQ, Li BQ, Zhang XQ, Huang JQ (2021) Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J Energy Chem 56:203–208

    Article  CAS  Google Scholar 

  10. Zhao M, Chen X, Li XY, Li BQ, Huang JQ (2021) An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv Mater 33:2007298

    Article  CAS  Google Scholar 

  11. Yang DH, Zhou HY, Liu H, Han BH (2019) Hollow N-doped carbon polyhedrons with hierarchically porous shell for confinement of polysulfides in lithium-sulfur batteries. Iscience 13:243–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Song ZC, Lu XL, Hu Q, Ren J, Zhang WQ, Zheng QJ, Lin DM (2019) Synergistic confining polysulfides by rational design a N/P co-doped carbon as sulfur host and functional interlayer for high-performance lithium-sulfur batteries. J Power Sources 421:23–31

    Article  CAS  Google Scholar 

  13. Gueon D, Ju MY, Moon JH (2020) Complete encapsulation of sulfur through interfacial energy control of sulfur solutions for high-performance Li-S batteries. Proc Natl Acad Sci USA 117:12686–12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang X, Qiu TF, Zhang XH, Wang L, Luo B, Wang LZ (2020) Recent advances of hollow-structured sulfur cathodes for lithium-sulfur batteries. Materials Chemistry Frontiers 4:2517–2547

    Article  CAS  Google Scholar 

  15. Xu YH, Zhang QF, Fan B, Xue B, Chen HJ, Zhang XH, Luo ZK, Wang F, Le Coq D, Calvez L, Ma HL, Fan P (2020) An extremely high rate Li-S battery with hybrid electrolyte. J Alloy Compd 845:156261

    Article  CAS  Google Scholar 

  16. Chen H, Pei A, Lin DC, Xie J, Yang AK, Xu JW, Lin KX, Wang JY, Wang HS, Shi FF, Boyle D, Cui Y (2019) Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode. Adv Energy Mater 9:1900858

    Article  Google Scholar 

  17. Liu FF, Wang LF, Zhang ZW, Shi PC, Feng YZ, Yao Y, Ye SF, Wang HY, Wu XJ, Yu Y (2020) A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode. Adv Func Mater 30:2001607

    Article  CAS  Google Scholar 

  18. Liu H, Zeng P, Li YoF YuH, Chen MF, Luo ZhG, Miao CQ, Chen GR, Wang XY (2020) The preparation and performances of lithium sulfide (Li2S)-oriented cathode composite via carbothermic reduction. J Alloy Compd 835:155421

    Article  CAS  Google Scholar 

  19. Nie B, Zhou CC, Gao MX, He DY, Yao ZH, Liu YF, Shen XY, Wang XW, Pan HG (2019) Bi-structural fibers of carbon nanotube coated with nitrogen/oxygen dual-doped porous carbon layer as superior sulfur host for lithium-sulfur batteries. J Alloy Compd 797:1205–1215

    Article  CAS  Google Scholar 

  20. Qiu WL, Li J, Zhang YG, Kalimuldina G, Bakenov Z (2021) Carbon nanotubes assembled on porous TiO2 matrix doped with Co3O4 as sulfur host for lithium-sulfur batteries. Nanotechnology 32:075403

    Article  CAS  PubMed  Google Scholar 

  21. Lee BJ, Kang TH, Lee HY, Samdani JS, Jung YJ, Zhang CF, Yu Z, Xu GL, Cheng L, Byun S, Lee YM, Amine K, Yu JS (2020) Revisiting the role of conductivity and polarity of host materials for long-life lithium-sulfur battery. Adv Energy Mater 10:1903934

    Article  CAS  Google Scholar 

  22. Balach J, Linnemann J, Jaumann T, Giebeler L (2018) Metal-based nanostructured materials for advanced lithium-sulfur batteries. J Mater Chem A 6:23903–23903

    Article  CAS  Google Scholar 

  23. Wang HQ, Zhang WC, Xu JZ, Guo ZP (2018) Advances in polar materials for lithium-sulfur batteries. Adv Func Mater 28:1707520

    Article  Google Scholar 

  24. Dai HH, Wang LM, Zhao Y, Xue JL, Zhou RC, Yu CY, An JN, Zhou JY, Chen Q, Sun GZ, Huang W (2021) Recent advances in molybdenum-based materials for lithium-sulfur batteries. Research 2021:327–356

    Article  Google Scholar 

  25. Liu KF, Zhao HB, Ye DX, Zhang JJ (2021) Recent progress in organic polymers-composited sulfur materials as cathodes for lithium-sulfur battery. Chem Eng J 417:129309

    Article  CAS  Google Scholar 

  26. Wang DW, Zeng QC, Zhou GM, Yin LC, Li F, Cheng HM, Gentle IR, Lu GQM (2013) Carbon-sulfur composites for Li-S batteries: status and prospects. Journal of Materials Chemistry A 1:9382–9394

    Article  CAS  Google Scholar 

  27. Fang RP, Zhao SY, Sun ZH, Wang DW, Cheng HM, Li F (2017) More reliable lithium-sulfur batteries: status, solutions and prospects. Adv Mater 29:1606823

    Article  Google Scholar 

  28. Ji PH, Shang B, Peng QM, Hu XB, Wei JW (2018) alpha-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J Power Sources 400:572–579

    Article  CAS  Google Scholar 

  29. Shao QJ, Guo DC, Wang C, Chen J (2020) Yolk-shell structure MnO2@hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li-S batteries. J Alloy Compd 842:155790

    Article  CAS  Google Scholar 

  30. Hu J, Wang ZY, Fu Y, Lyu LL, Lu ZG, Zhou LM (2020) In situ assembly of MnO2 nanosheets on sulfur-embedded multichannel carbon nanofiber composites as cathodes for lithium-sulfur batteries. Science China-Materials 63:728–738

    Article  CAS  Google Scholar 

  31. Dong W, Meng LQ, Zhao MN, Yang F, Shen D, Hong XD, Tang SW, Sun W, Yang SB (2021) Fe2O3/rGO/CNT composite sulfur hosts with physical and chemical dual-encapsulation for high performance lithium–sulfur batteries. New J Chem 45:21582–21590

    Article  CAS  Google Scholar 

  32. Chu XR, Zhang L, Li CL, Zhao ZK, Liu Q, Xie CX, Wu BR, Mu DB (2021) CNTs@S cathode modified with a barrier layer of TiO2 decorated reduced graphene oxide for lithium-sulfur batteries. Ionics 27:2387–2395

    Article  CAS  Google Scholar 

  33. Zhang SJ, Li C, Zhang X, Sun XZ, Wang K, Ma YW (2017) High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and activated carbon cathode. ACS Appl Mater Interfaces 9:17137–17145

    Google Scholar 

  34. Li B, Sun ZH, Zhao Y, Zhang ZS (2019) Facile synthesis of three-dimensional carbon nanotube/Fe3O4 microspheres as sulfur host for high performance lithium-sulfur batteries. Mater Lett 255:126529

    Article  CAS  Google Scholar 

  35. Yu QH, Luo RJ, Bai XL, Yang WC, Lu Y, Hou XY, Peng T, Liu XM, Kim JK, Luo YS (2018) Rational design of double-confined Mn2O3/S@Al2O3 nanocube cathodes for lithium-sulfur batteries. J Solid State Electrochem 22:849–858

    Article  CAS  Google Scholar 

  36. Duan MT, Wu MR, Xue K, Bian ZX, Shi J, Guo XM, Cao F, Zhang JH, Kong QH, Zhang F (2021) Preparation of CoO/SnO2@NC/S composite as high-stability cathode material for lithium-sulfur batteries. Int J Miner Metall Mater 28:1647–1655

    Article  CAS  Google Scholar 

  37. Qiao ZS, Zhou F, Zhang QF, Pei F, Zheng HF, Xu WJ, Liu PF, Ma YT, Xie QS, Wang LS, Fang XL, Peng DL (2019) Chemisorption and electrocatalytic effect from CoxSny alloy for high performance lithium sulfur batteries. Energy Storage Materials 23:62–71

    Article  Google Scholar 

  38. Ji PH, Zeng TB, Hu XB, Xu YL, Zhou GP (2018) LiMn2O4 as strong polysulfides adsorption carrier for high performance lithium-sulfur batteries. Solid State Ionics 315:52–58

    Article  CAS  Google Scholar 

  39. Xu K, Liang X, Wang LL, Wang Y, Yun JF, Sun Y, Xiang HF (2021) Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium-sulfur batteries. Rare Met 40:2810–2818

    Article  CAS  Google Scholar 

  40. Yang LW, Li Y, Wang Y, Li Q, Chen YX, Zhong BH, Guo XD, Wu ZG, Liu YX, Wang GK, Song Y, Xiang W, Zhong YJ (2021) Nitrogen-doped sheet VO2 modified separator to enhanced long-cycle performance lithium-sulfur battery. J Power Sources 501:230040

    Article  CAS  Google Scholar 

  41. Tang TY, Zhang T, Zhao LN, Zhang B, Li W, Xu JJ, Li T, Zhang L, Qiu HL, Hou YL (2020) Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Science China-Materials 63:1910–1919

    Article  CAS  Google Scholar 

  42. Jiang SX, Chen MF, Wang XY, Zeng P, Li YF, Liu H, Li XL, Huang C, Shu HB, Luo ZG, Wu C (2019) A tin disulfide nanosheet wrapped with interconnected carbon nanotube networks for application of lithium sulfur batteries. Electrochim Acta 313:151–160

    Article  CAS  Google Scholar 

  43. He JR, Hartmann G, Lee M, Hwang GS, Chen YF, Manthiram A (2019) Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li-S batteries. Energy Environ Sci 12:344–350

    Article  CAS  Google Scholar 

  44. Wang YQ, Xu Y, Ma SX, Duan RM, Zhao YF, Zhang YF, Liu ZH, Li C (2020) Low temperature performance enhancement of high-safety lithium–sulfur battery enabled by synergetic adsorption and catalysis. Electrochim Acta 353:136470

    Article  CAS  Google Scholar 

  45. Ma ZY, Liu Y, Gautam J, Liu WT, Chishti AN, Gu J, Yang G, Wu Z, Xie J, Chen M, Ni LB, Diao GW (2021) Embedding cobalt atom clusters in CNT-wired MoS2 tube-in-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li-S batteries. Small 17:2102710

    Article  CAS  Google Scholar 

  46. Che B, Wang D, Xu XC (2019) S@NiS Hollow spheres as cathode materials for lithium-sulfur batteries. Int J Electrochem Sci 14:9520–9526

    Article  CAS  Google Scholar 

  47. Wang YK, Zhang RF, Sun ZH, Wu H, Lu SY, Wang JA, Yu W, Liu JM, Gao GX, Ding SJ (2020) Spontaneously formed Mott-Schottky electrocatalyst for lithium-sulfur batteries. Adv Mater Interfaces 7:1902092

    Article  CAS  Google Scholar 

  48. Chen WM, Jin HC, Xie S, Xie HY, Zhu JF, Ji HX, Wan LJ (2021) TiN nanocrystal anchored on N-doped graphene as effective sulfur hosts for high-performance lithium-sulfur batteries. J Energy Chem 54:16–22

    Article  CAS  Google Scholar 

  49. Cao YB, Wang CC, Wang XH, Zhang HJ, Jiang XM, Xiong CY, Liang F (2021) Two-dimensional mesoporous B, N co-doped carbon nanosheets decorated with TiN nanostructures for enhanced performance lithium–sulfur batteries. Appl Phys A 127:933

    Article  CAS  Google Scholar 

  50. Liu RQ, Liu WH, Bu YL, Yang WW, Wang C, Priest C, Liu ZW, Wang Y, Chen JY, Wang YH, Cheng J, Lin XJ, Feng XM, Wu G, Ma YW, Huang W (2020) Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries. ACS Nano 14:17308–17320

    Article  CAS  Google Scholar 

  51. Cheng ZZ, Wang YX, Zhang WJ, Xu M (2020) Boosting polysulfide conversion in lithium–sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Applied Energy Materials 3:4523–4530

    Article  CAS  Google Scholar 

  52. Li N, Xu ZM, Wang P, Zhang ZA, Hong B, Li J, Lai YQ (2020) High-rate lithium-sulfur batteries enabled via vanadium nitride nanoparticle/3D porous graphene through regulating the polysulfides transformation. Chem Eng J 398:125432

    Article  CAS  Google Scholar 

  53. Qiao L, Ren LT, Zhang RR, Chen J, Xu MG, Liu J, Xu HJ, Liu W, Chang Z, Sun XM (2021) Hollow carbon spheres embedded with VN quantum dots as an efficient cathode host for lithium–sulfur batteries. Energy Fuels 35:10219–10226

    Article  CAS  Google Scholar 

  54. Deng DR, Xue F, Bai CD, Lei J, Yuan RM, Zheng MS, Dong QF (2018) Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range. ACS Nano 12:11120–11129

    Article  CAS  PubMed  Google Scholar 

  55. Mussa Y, Bayhan Z, Althubaiti N, Arsalan M, Alsharaeh E (2021) Hexagonal boron nitride effect on the performance of graphene-based lithium–sulfur batteries and its stability at elevated temperatures. Mater Chem Phys 257:123807

    Article  CAS  Google Scholar 

  56. He B, Li WC, Zhang Y, Yu XF, Zhang BS, Li F, Lu AH (2018) Paragenesis BN/CNTs hybrid as a monoclinic sulfur host for high rate and ultra-long life lithium–sulfur battery. J Mater Chem A 6:24194–24200

    Article  CAS  Google Scholar 

  57. Li S, Xiang Q, Aslam MK, Cen Y, Guo C, Hu J, Li W, Chen C (2019) Fe-functionalized mesoporous carbonaceous microsphere with high sulfur loading as cathode for lithium-sulfur batteries. J Electroanal Chem 850:113408

    Article  CAS  Google Scholar 

  58. Gao Z, Schwab Y, Zhang YY, Song NN, Li XD (2018) Ferromagnetic nanoparticle-assisted polysulfide trapping for enhanced lithium-sulfur batteries. Adv Func Mater 28:1800563

    Article  Google Scholar 

  59. Zhang H, Cui H, Li J, Liu Y, Yang Y, Wang M (2019) Frogspawn inspired hollow Fe3C@N-C as an efficient sulfur host for high-rate lithium-sulfur batteries. Nanoscale 11:21532–21541

    Article  CAS  PubMed  Google Scholar 

  60. Jin ZS, Zhao M, Lin TN, Wang Z, Zhang Q, Liu BQ, Li L, Chen LH, Zhang LY, Su ZM, Wang CG (2020) Ordered micro-mesoporous carbon spheres embedded with well-dispersed ultrafine Fe3C nanocrystals as cathode material for high-performance lithium-sulfur batteries. Chem Eng J 388:124315

    Article  CAS  Google Scholar 

  61. Lei WX, Wang XR, Zhang YW, Luo ZY, Xia PT, Zou YL, Ma ZS, Pan Y, Lin S (2021) Facile synthesis of Fe3C nano-particles/porous biochar cathode materials for lithium sulfur battery. J Alloy Compd 853:157024

    Article  CAS  Google Scholar 

  62. Zhao TK, Chen JW, Dai KQ, Zhang JX, Yuan ML, Li XQ, Zhang K, Zhang JT, Li YL, Liu ZJ, He HY, Li B, Zhang GJ (2022) Boosted polysulfides regulation by iron carbide nanoparticles-embedded porous biomass-derived carbon toward superior lithium-sulfur batteries. J Colloid Interface Sci 605:129–137

    Article  CAS  PubMed  Google Scholar 

  63. Zhao S, Wei ZB (2020) Novel starfish-like Mo2C framework as efficient sulfur host for high electrochemical performance lithium–sulfur batteries. J Chem Technol Biotechnol 96:249–253

    Article  Google Scholar 

  64. Liu GL, Yuan C, Zeng P, Cheng C, Yan TR, Dai KH, Mao J, Zhang L (2022) Bidirectionally catalytic polysulfide conversion by high-conductive metal carbides for lithium-sulfur batteries. J Energy Chem 67:73–81

    Article  CAS  Google Scholar 

  65. Wang JY, Wang WJ, Li HP, Tan TZ, Wang X, Zhao Y (2019) Carbon nanotubes/SiC prepared by catalytic chemical vapor deposition as scaffold for improved lithium-sulfur batteries. J Nanopart Res 21:113

    Article  Google Scholar 

  66. Shi NX, Xi BJ, Feng ZY, Liu JC, Wei DH, Liu J, Feng JK, Xiong SL (2019) Strongly coupled W2C atomic nanoclusters on N/P-codoped graphene for kinetically enhanced sulfur host. Adv Mater Interfaces 6:1802088

    Article  Google Scholar 

  67. Vu DL, Kim N, Myung Y, Yang M, Jw L (2020) Aluminum phosphate as a bifunctional additive for improved cycling stability of Li-S batteries. J Power Sources 459:228068

    Article  CAS  Google Scholar 

  68. Jin Y, Ji PH, Hu XB, Qi XQ, Li G, Lin ZJ (2022) VOPO4 as effective long-chain polysulfides adsorbent for lithium-sulfur batteries. Ionics 28:609–617

    Article  CAS  Google Scholar 

  69. Li JF, Niu ZH, Chen YL, Zhou QH, Yan Y, Guo C, Li M (2020) Mn3(PO4)2/rGO as dual-function polysulfide inhibitor through oxygen deficiencies and polar sites for lithium sulfur batteries. Appl Surf Sci 521:146425

    Article  CAS  Google Scholar 

  70. Zhao W, Feng WJ, Chen JZ, Huang ZY (2022) ZIF-67-derived cobalt-based sulfate CoSO4/carbon nanotube nanocomposites as host material for high-performance lithium-sulfur battery cathode. Ionics 28:635–645

    Article  CAS  Google Scholar 

  71. Lu XL, Wang H, Liu XQ, Song ZC, Jiang N, Xie FY, Zheng QJ, Lin DM (2020) Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium-sulfur batteries. J Alloy Compd 838:155638

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Du, R., Yu, C. et al. Application of transition metal compounds in cathode materials for lithium-sulfur battery. Ionics 28, 5275–5288 (2022). https://doi.org/10.1007/s11581-022-04771-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04771-5

Keywords

Navigation