Skip to main content

Advertisement

Log in

Graphene oxide grafting naphthoquinone derivative with enhanced specific capacitance and energy density for zinc-ion hybrid supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene and its derivatives with high specific surface area and superior conductivity have broad application foreground for zinc-ion hybrid supercapacitors (ZIHSs), but so far, their electrochemical behaviors are still far from satisfactory. Herein, we report an efficient and affordable method for boosting the energy storage properties of graphene oxide (GO), the most important precursor of graphene, by chemically bonding it with 2, 3-diamino-1, 4-naphthoquinone (DANQ), a novel naphthoquinone derivant. Effects of the DANQ dosage are revealed, and results depict that, as the DANQ dosage is 72 mg (120 mg of GO), the GO-DANQ-72 presents a dramatically better performance in contrast to the other three counterparts (raw GO, GO-DANQ-48, and GO-DANQ-96). Specifically, the GO-DANQ-72//Zn has a remarkable specific capacitance of 116.3 F g−1 (corresponding to a specific capacity of 51.7 mAh g−1) at a current density of 0.5 A g−1, and a decent energy density of 41.3 Wh kg−1 at 399.9 W kg−1. Furthermore, great cyclic stability with a capacitance retention of 88.2% after 5000 cycles is shown. This study may provide a new chance for the development of GO-based carbon cathode for high-performance ZIHSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abbasi T, Premalatha M, Abbasi SA (2011) The return to renewables: will it help in global warming control? Renew Sust Energ Rev 15(1):891–894

    Article  Google Scholar 

  2. Wang HY, Ye WQ, Yang Y, Zhong YJ, Hu Y (2021) Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives. Nano Energy 85:105942

    Article  CAS  Google Scholar 

  3. Amiri A, Polycarpou AA (2021) Recent advances in electrochemically-efficient materials for zinc-ion hybrid supercapacitors. Renew Sust Energ Rev 148:111288

    Article  CAS  Google Scholar 

  4. Tian Y, Amal R, Wang DW (2016) An aqueous metal-ion capacitor with oxidized carbon nanotubes and metallic zinc electrodes. Front Energy Res 4(4):34

    Google Scholar 

  5. Dong LB, Ma XP, Li Y, Zhao L, Liu WB, Cheng JY, Xu CJ, Li BH, Yang QH, Kang FY (2018) Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors. Energy Storage Mater 13:96–102

    Article  Google Scholar 

  6. Gong XF, Chen JW, Lee PS (2021) Zinc-ion hybrid supercapacitors: progress and future perspective. Batteries Supercaps 4:1529–1546

    Article  CAS  Google Scholar 

  7. Ma XP, Cheng JY, Dong LB, Liu WB, Mou J, Zhao L, Wang JJ, Ren DY, Wu JL, Xu CJ, Kang FY (2019) Multivalent ion storage towards high-performance aqueous zinc-ion hybrid supercapacitors. Energy Storage Mater 20:335–342

    Article  Google Scholar 

  8. Yang Q, Huang ZD, Li X, Liu ZX, Li HF, Liang GJ, Wang DH, Huang Q, Zhang SJ, Chen S, Zhi CY (2019) A wholly degradable, rechargeable Zn-Ti3C2 MXene capacitor with superior anti-self-discharge function. ACS Nano 13:8275–8283

    Article  CAS  PubMed  Google Scholar 

  9. Han L, Huang HL, Fu XB, Li JF, Yang ZL, Liu XJ, Pan LK, Xu M (2020) A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem Eng J 392:123733

    Article  CAS  Google Scholar 

  10. Zhou HT, Liu C, Wu JC, Liu MH, Zhang D, Song HL, Zhang XY, Gao HQ, Yang JH, Chen D (2019) Boosting the electrochemical performance through proton transfer for the Zn-ion hybrid supercapacitor with both ionic liquid and organic electrolytes. J Mater Chem A 7:9708–9715

    Article  CAS  Google Scholar 

  11. Liu C, Wu J, Zhou H, Liu M, Zhang D, Li S, Yang J (2019) Great enhancement of carbon energy storage through narrow pores and hydrogen-containing functional groups for aqueous Zn-ion hybrid supercapacitor. Molecules 24:2589

    Article  CAS  PubMed Central  Google Scholar 

  12. Zeng YX, Zhang X, Qin R, Liu XQ, Fang PP, Zheng DZ, Tong YX, Lu XH (2019) Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries. Adv Mater 31(36):1903675

    Article  CAS  Google Scholar 

  13. Pan ZM, Lu ZM, Xu L, Xu L, Wang DW (2020) A robust 2D porous carbon nanoflake cathode for high energy-power density Zn-ion hybrid supercapacitor applications. Appl Surf Sci 510:145384

    Article  CAS  Google Scholar 

  14. Liu QY, Zhang H, Xie J, Liu X, Liu XQ (2020) Recent progress and challenges of carbon materials for Zn-on hybrid supercapacitors. Carbon Energy 2(4):521–539

    Article  CAS  Google Scholar 

  15. Joshi D, Koduru J, Malek N, Hussain C, Kailasa S (2021) Surface modifications and analytical applications of graphene oxide: a review. Trends Analyt Chem 144:116448

    Article  CAS  Google Scholar 

  16. Matsuura KJ, Umahara YK, Gotoh KZ, Hoshijima YK, Ishida HY (2018) Surface modification effects on the tensile properties of functionalised graphene oxide epoxy films. RSC Adv 8:9677–9684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang XS, Pei ZX, Wang CJ, Yuan ZW, Wei L, Pan YQ, Mahmood A, Shao Q, Chen Y (2019) Flexible zinc-ion hybrid fiber capacitors with ultrahigh energy density and long cycling life for wearable electronics. Small 15(47):1903817

    Article  CAS  Google Scholar 

  18. Ni T, Wang SL, Shi JJ, Du XY, Cheng QH, Dong ZY, Ruan LM, Zeng W, Guo XH, Ren XG, Huang ZX (2020) Highly flexible and self-healable zinc-ion hybrid supercapacitors based on MWCNTs-RGO fibers. Adv Mater Technol 5(9):2000268

    Article  CAS  Google Scholar 

  19. Muthu D, Vargheese S, Haldorai Y, Kumar R (2021) NiMoO4/reduced graphene oxide composite as an electrode material for hybrid supercapacitor. Mat Sci in Semicon Proc 135:106078

    Article  CAS  Google Scholar 

  20. Han JW, Wang K, Liu WH, Li C, Sun XZ, Zhang X, An YB, Yi S, Ma YW (2018) Rational design of nano-architecture composite hydrogel electrode towards high performance zn-ion hybrid cell. Nanoscale 27(10):13083–13091

    Article  Google Scholar 

  21. Yang J, Cao JY, Peng YD, Bissett M, Kinloch IA, Dryfe R (2021) Unlocking the energy storage potential of polypyrrole via electrochemical graphene oxide for high performance zinc-ion hybrid supercapacitors. J Power Sources 516:230663

    Article  CAS  Google Scholar 

  22. Jiang HD, Yuan D, Huang DD, Lin B, Li JK, Guo PC, Wang YX (2022) Towards high rate and high areal capacity Zn ion hybrid supercapacitor: fluffy graphene architecture anchored with ultrathin redox-active molecule. Appl Surf Sci 585:152695

    Article  CAS  Google Scholar 

  23. Sun GC, Hu Y, Sha YY, Shi CD, Yin G, Zhang HP, Liu HJ, Liu Q (2019) An insoluble naphthalenediimide derivative as a highly stable cathode material for lithium-ion batteries. Mater Chem Phys 236:121815

    Article  CAS  Google Scholar 

  24. Zhao Q, Huang WW, Luo ZQ, Liu LJ, Lu Y, Li YX, Li L, Hu JY, Ma H, Chen J (2018) High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv 4(3):1761

    Article  CAS  Google Scholar 

  25. Sun GC, Yang BZ, Chen XJ, Wei YH, Yin G, Zhang HP, Liu Q (2022) Aqueous zinc batteries using N-containing organic cathodes with Zn2+ and H+ Co-uptake. Chem Eng J 431(3):134253

    Article  CAS  Google Scholar 

  26. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 6:1339

    Article  Google Scholar 

  27. Lee J, Kim H, Park M (2016) Long-life, high-rate lithium-organic batteries based on naphthoquinone derivatives. Chem Mater 28(7):2408–2416

    Article  CAS  Google Scholar 

  28. Mishra AK, Ramaprabhu S (2011) Carbon dioxide adsorption in graphene sheets. AIP Adv 1(3):2158–3226

    Google Scholar 

  29. Song YD, Gao YR, Rong HR, Wen H, Sha YY, Zhang HP, Liu HJ, Liu Q (2018) Functionalization of graphene oxide with naphthalenediimide diamine for high-performance cathode materials of lithium-ion batteries. Sustain Energy Fuels 2:803–810

    Article  CAS  Google Scholar 

  30. Cao HQ, Wu XM, Yin G, Warner J (2012) Synthesis of adenine-modified reduced graphene oxide nanosheets. Inorg Chem 51(5):2954–2960

    Article  CAS  PubMed  Google Scholar 

  31. Choi EY, Han TH, Hong J, Kim JE, Lee S, Kim H, Kim SO (2010) Noncolvalent functionalization of graphene with end-functional polymers. J Mater Chem A 20:1907

    Article  CAS  Google Scholar 

  32. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  CAS  PubMed  Google Scholar 

  33. Kubesa O, Horackova V, Moravec Z, Farka Z, Skladal P (2017) Graphene and graphene oxide for biosensing. Monatsh Chem 148:1937–1944

    Article  CAS  Google Scholar 

  34. Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513

    Article  CAS  PubMed  Google Scholar 

  35. Song YD, Hu Y, Sha YY, Rong HR, Wen H, Liu HJ, Liu Q (2019) Graphene oxide linked with N, N’-diamino-1,4,5,8-naphthalenetetracarboxylic bisimide as a stable cathode material for lithium-ion batteries. Ionics 25:2987–2995

    Article  CAS  Google Scholar 

  36. Wang N, Hou D, Li Q, Zhang PF, Wei H, Mai YY (2019) Two-dimensional interface engineering of mesoporous polydopamine on graphene for novel organic cathodes. ACS Appl Energy Mater 2(8):5816–5823

    Article  CAS  Google Scholar 

  37. Song P, Shen XP, He WF, Kong LR, He XM, Ji ZY, Yuan AH, Zhu GX, Li N (2018) Protein-derived nitrogen-doped hierarchically porous carbon as electrode material for supercapacitors. J Mater Sci: Mater El 29:12206–12215

    CAS  Google Scholar 

  38. Lin T, Chen I, Liu FX, Yang CY, Bi H, Xu FF, Huang FQ (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267):1508–1513

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh S, Barg S, Jeong SM, Ostrikov K (2020) Heteroatom-doped and oxygen-functionalized nanocarbons for high-performance supercapacitors. Adv Energy Mater 10:2001239

    Article  CAS  Google Scholar 

  40. Wei YH, Chen XJ, Gao GX, Shen DZ, Rong HH, Liu Q (2022) Achieving high-performance aqueous Zn-ion hybrid supercapacitors by utilizing zinc-based MOF-derived N-doped carbon. Ionics 28:3477–3488

    Article  CAS  Google Scholar 

  41. Bhagwan J, Ramulu B, Yu JS (2019) High-performance quasi-solid-state asymmetric supercapacitors based on BiMn2O5 nanoparticles and redox-additive electrolytes. Inorg Chem Front 8(6):2061–2070

    Article  Google Scholar 

  42. Wang J, Polleux J, Lim J, Dunn B (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931

    Article  CAS  Google Scholar 

  43. Wang H, Wang M, Tang YB (2018) A novel zinc-ion hybrid supercapacitor for long-life and low-cost energy storage applications. Energy Storage Mater 13:1–7

    Article  Google Scholar 

  44. Wang Q, Wang SL, Guo XH, Ruan LM, Wei N, Ma Y, Li J, Wang M, Li W, Zeng W (2019) MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv Electron Mater 5(12):1900537

    Article  CAS  Google Scholar 

  45. Chen SM, Ma LT, Zhang K, Kamruzzaman M, Zhi CY, Zapien JA (2019) A flexible solid-state zinc ion hybrid supercapacitor based on co-polymer derived hollow carbon spheres. J Mater Chem A 7(13):7784–7790

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 21975034), the Natural Science Research Key Project of Jiangsu Colleges and Universities (No. 16KJA430005), and Scientific Research Foundation of Jiangsu Provincial Education Department (No. 22KJB480002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Song or Qi Liu.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Supplementary file2 (DOCX 834 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, N., Song, P., Wen, H. et al. Graphene oxide grafting naphthoquinone derivative with enhanced specific capacitance and energy density for zinc-ion hybrid supercapacitors. Ionics 28, 4425–4433 (2022). https://doi.org/10.1007/s11581-022-04682-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04682-5

Keywords

Navigation