Skip to main content
Log in

Influence of operation parameters on performance of variable section stepped flow channel fuel cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In order to reveal the influence of operating parameters on the performance of variable cross-section channel fuel cell, a variable cross-section stepped channel was studied by using multiphysical field coupling software COMSOL. Firstly, the performance changes of the fuel cell under different step heights and lengths were explored. Secondly, according to the selected step configuration, the effects of operating temperature, operating pressure, and cathode relative humidity (RH) on reaction gas flow velocity, fuel cell heat production, and output performance were studied. The numerical models of three operating parameters and the peak power density were obtained by the least square method, and the reliability of the numerical models was verified by experiments. The results show that the optimal step height and length are 0.2 mm and 9 mm, respectively. The operating temperature and cathode RH are positively correlated with the flow velocity of reaction gas, while the operating pressure is negatively correlated with the flow velocity of reaction gas. The three operating parameters studied are positively correlated with the heat production and output performance of the fuel cell. For the stepped channel, the weights of operating temperature rise of 1°, operating pressure rise of 0.1 atm, and cathode RH rise of 1% are 1%, 26%, and 73%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Sadeghifar H, Torkavannejad A, Pourmahmoud N (2018) A novel, net-shape polymer electrolyte fuel cell: higher power density, smaller stack size and less bipolar plate required. Int J Heat Mass Transf 117:1099–1106. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.078

    Article  CAS  Google Scholar 

  2. Yang L, Chen T, Liu S et al (2019) Effect of temperature and back pressure on the performance of PEMFC. Fuel Cell Bimonthly 049(005):364–367 (in Chinese)

    Google Scholar 

  3. Ji EP, Hwang W, Lim MS et al (2019) Achieving breakthrough performance caused by optimized metal foam flow field in fuel cells. Int J Hydrogen Energy 44(39):22074–22084. https://doi.org/10.1016/j.ijhydene.2019.06.073

    Article  CAS  Google Scholar 

  4. Xi CA, Zy A, Chen YB et al (2020) Performance investigation on a novel 3D wave flow channel design for PEMFC - ScienceDirect. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.06.057

    Article  Google Scholar 

  5. Wang B, Chen W, Pan F et al (2019) A dot matrix and sloping baffle cathode flow field of proton exchange membrane fuel cell. J Power Sour 434(SEP.15):226741. https://doi.org/10.1016/j.jpowsour.2019.226741

    Article  CAS  Google Scholar 

  6. Huang H, Lei H, Liu M et al (2020) Effect of superior mesenteric artery branch structure-based flow field on PEMFC performance. Energy Convers Manag 226(4):113546. https://doi.org/10.1016/j.enconman.2020.113546

    Article  CAS  Google Scholar 

  7. Yin Y, Wu S, Qin Y et al (2020) Quantitative analysis of trapezoid baffle block sloping angles on oxygen transport and performance of proton exchange membrane fuel cell. Appl Energy 271. https://doi.org/10.1016/j.apenergy.2020.115257

  8. Ebrahimzadeh AA, Khazaee I, Fasihfar A (2018) Numerical investigation of dimensions and arrangement of obstacle on the performance of PEM fuel cell. Heliyon 4(11). https://doi.org/10.1016/j.heliyon.2018.e00974

  9. Chen H, Guo H, Ye F et al (2021) A numerical study of orientated-type flow channels with porous-blocked baffles of proton exchange membrane fuel cells. Int J Hydrogen Energy

  10. Dong P , Xie G , Ni M (2020) The mass transfer characteristics and energy improvement with various partially blocked flow channels in a PEM fuel cell. Energy 117977. https://doi.org/10.1016/j.energy.2020.117977

  11. Peng Y, Zhang G, Wang Y et al (2017) Differences on the influences of humidity of cathode and anode on the performance of proton exchange membrane fuel cell. Trans China Electrotech Soc 32(004):196–203 (in Chinese)

    Google Scholar 

  12. Wang S, Qi H (2015) Experimental study on PEM fuel cell under conditions of different humidification temperatures. J Zhejiang Univ (Eng Sci) 49(11) (in Chinese). https://doi.org/10.3785/j.issn.1008-973X.2015.11.022

  13. AskaripourH (2019) Effect of operating conditions on the performance of a PEM fuel cell. Int J Heat Mass Transfer 144(Dec.):118705.1–118705.10. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118705

  14. Meng X, Li C, Lei H et al (2020) Simulation on the effect of operating parameter coupling on proton exchange membrane fuel cell performance. Sci Technol Eng 20(7):2711–2718 (in Chinese)

    Google Scholar 

  15. Zhao C, Xing S, Liu W et al (2020) Comprehensive anode parameters study for the open-cathode PEMFC. Energy Fuels 34:7582–7590. https://doi.org/10.1016/j.energy.2018.02.133

    Article  CAS  Google Scholar 

  16. Yang T, Sheu B, Ghalambaz M et al (2020) Effects of operating parameters and load mode on dynamic cell performance of proton exchange membrane fuel cell. Int J Energy Res (27). https://doi.org/10.1002/er.5942

  17. Hu M, Zhao R, Pan R et al (2021) Disclosure of the internal transport phenomena in an air-cooled proton exchange membrane fuel cell—part II: parameter sensitivity analysis. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.03.015

    Article  Google Scholar 

  18. Chen H, Liu B, Zhang T et al (2019) Influencing sensitivities of critical operating parameters on PEMFC output performance and gas distribution quality under different electrical load conditions. Appl Energy 255:113849. https://doi.org/10.1016/j.apenergy.2019.113849

    Article  Google Scholar 

  19. Laoun B, Naceur MW, Khellaf A et al (2016) Global sensitivity analysis of proton exchange membrane fuel cell model. Int J Hydrogen Energy 41(22):9521–9528

    Article  CAS  Google Scholar 

  20. Pan M , Pan C , Liao J et al (2021) Assessment of sensitivity to evaluate the impact of operating parameters on stability and performance in proton exchange membrane fuel cells. Energies 14. https://doi.org/10.3390/en14144069

  21. Lim BH, Majlan EH, Daud W et al (2020) Numerical investigation of the effect of three-dimensional modified parallel flow field designs on proton exchange membrane fuel cell performance. Chem Eng Sci 217:115499. https://doi.org/10.1016/j.ces.2020.115499

    Article  CAS  Google Scholar 

  22. Yang W-J, Wang HY, Kim YB (2013) Effects of the humidity and the land ratio of channel and rib in the serpentine three-dimensional PEMFC model. Int J Energy Res 37(11). https://doi.org/10.1002/er.2935

  23. Ahmadi N, Dadvand A, Rezazadeh S et al (2016) Analysis of the operating pressure and GDL geometrical configuration effect on PEM fuel cell performance. J Braz Soc Mech Sci Eng 38(8):2311–2325. https://doi.org/10.1007/s40430-016-0548-0

    Article  CAS  Google Scholar 

  24. Zhao F (2020) Metal bipolar plate for fuel cell step-shaped runner with variable cross section: China,CN111211336A [P]

  25. Heidary H, Kermani MJ, Dabir B (2016) Influences of bipolar plate channel blockages on PEM fuel cell performances. Energy Convers Manag 124(sep.):51–60. https://doi.org/10.1016/j.enconman.2016.06.043

    Article  CAS  Google Scholar 

  26. Qiu D, Peng L, Tang J et al (2020) Numerical analysis of air-cooled proton exchange membrane fuel cells with various cathode flow channels. Energy 198(May1):117334.1-117334.10. https://doi.org/10.1016/j.energy.2020.117334

    Article  CAS  Google Scholar 

  27. Perng SW, Wu HW (2015) A three-dimensional numerical investigation of trapezoid baffles effect on non-isothermal reactant transport and cell net power in a PEMFC. Appl Energy 143(apr.1):81–95. https://doi.org/10.1016/j.apenergy.2014.12.059

    Article  CAS  Google Scholar 

  28. Zhang Z, Hu S, Shi X et al (2018) Experimental study of clamping force to electromechanical performance of proton exchange membrane fuel cell stack. J Tongji Univ (Nat Sci) 46(04):86–93. https://doi.org/10.11908/j.issn.0253-374x.2018.04.013.

  29. Ghasabehi M (2020) Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation. Fuel 285:119194. https://doi.org/10.1016/j.fuel.2020.119194

    Article  CAS  Google Scholar 

  30. Cheng B, Bessler WG (2015) Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part I. Model development. J Power Sources 275:922–934. https://doi.org/10.1016/j.jpowsour.2014.11.058

    Article  CAS  Google Scholar 

  31. Luo X, Chen S, Xia Z, et al (2017) PEMFC performance research of different flow field. Fuel Cell Bimonthly 47(04):208–211 (in Chinese). https://doi.org/10.19535/j.1001-1579.2017.04.005

  32. Lin R, Jiang Z, Ren Y et al (2018) Performance degradation and strategy optimization of PEMFCS under sub-freezing temperature. J Tongji Univ (Nat Sci) 46(05):658–666 (in Chinese)

  33. Ma L, Shen S, Jia F et al (2010) Modelling of water and temperature distribution in PEM fuel cell. J Eng Thermophys 31(12):2051–2056 (in Chinese)

    Google Scholar 

  34. Li CY, Feng SY, Shao L et al (2018) Experimental analysis of carbon dioxide diffusion coefficient in RP-3 jet fuel. J Beijing Univ Aeronaut Astronaut 44 (4):765–771 (in Chinese). https://doi.org/10.13700/j.bh.1001-5965.2017.0265

  35. Zhu X, Zhang J, Li X et al (2016) Electrochemical continuous separation of oxygen from air (I): optimum of single cell performances. CIESC J 005(005):2022–2032 (in Chinese). https://doi.org/10.11949/j.issn.0438-1157.20151502

  36. Cao F, Ding J, Mu Y et al (2016) Experimental study on the dynamic performance of a proton exchange membrane fuel cell. J Eng Thermophys 37(04):153–157 (in Chinese)

  37. Qu B, Chen H, Xing X et al (2017) Analysis of dynamic response of proton exchange membrane fuel cell under load change conditions. J TONGJI Univ (Nat Sci) 45(S1):110–116 (in Chinese). https://doi.org/10.11908/j.issn.0253-374x.2017.s1.019

  38. Dong W, Zhang Y, Zhang H et al (2019) Effect of plate geometry size on laser bending forming angle. J Plast Eng 26(6):62–66 (in Chinese). https://doi.org/10.3969/j.issn.1007-2012.2019.06.01

Download references

Funding

This work was supported by Bidding Project of Shanxi Science and Technology Plan (20201101020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongquan Dong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Dong, H., Tian, H. et al. Influence of operation parameters on performance of variable section stepped flow channel fuel cell. Ionics 28, 1887–1901 (2022). https://doi.org/10.1007/s11581-021-04417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04417-y

Keywords

Navigation