Skip to main content

Advertisement

Log in

Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

NASICON type Na3V2(PO4)3, as a class of cathode material, have attracted much attention and achieved great success especially in case of sodium-ion battery. Herein, carbon-coated Na3V2(PO4)3 nanoplates are fabricated through a solvothermal method combined with thermal treatment. The nanoplate structure and carbon-coated layer could bring several advantages; for example, the nanoplate structure can provide sufficient specific surface area to contact with electrolyte, leading to easy transmission of sodium ions. In addition, carbon coating could indeed increase the electrode conductivity and simultaneously restrain the volume expansion of Na3V2(PO4)3 electrode material during the intercalation/extraction of Na+ ions. Consequently, the carbon-coated Na3V2(PO4)3 nanoplates exhibit impressive sodium storage performance with a high reversible capacity of 107 mAh g–1 at 1 C after 300 cycles and 91 mAh g–1 at 10 C after 2000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zheng Y, Zhou TF, Zhang CF, Mao JF, Liu HK, Guo ZP (2016) Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries. Angew Chem Int Ed 55:3408–3413

    Article  CAS  Google Scholar 

  2. Yang Z, Zhang J, Kintner-Meyer M, Lu X, Choi D, Lemmon J, Liu J (2011) Electrochemical energy storage for green grid. Chem Rev 111:3577–3613

    Article  CAS  Google Scholar 

  3. Li T, Qin TT, Yang CL, Zhang WL, Zhang W (2021) Mechanism orienting structure construction of electrodes for aqueous electrochemical energy storage systems: a review. Nanoscale 13(6):3412–3435

    Article  CAS  Google Scholar 

  4. Kundu D, Talaie E, Duffort V, Nazar LF (2015) The emerging chemistry of sodium ion batteries for electrochemical energy storage. Angew Chem Int Ed 54:3431–3448

    Article  CAS  Google Scholar 

  5. Chotard JN, Rousse G, David R, MentréO CM, Masquelier C (2015) Discovery of a Sodium-Ordered Form of Na3V2(PO4)3 below Ambient Temperature. Chem Mater 27(17):5982–5987

    Article  CAS  Google Scholar 

  6. Li S, Dong Y, Xu L, Xu X, He L, Mai LQ (2014) Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries. Adv Mater 26:3545–3553

    Article  CAS  Google Scholar 

  7. Cao Y, Xiao L, Wang W, Choi D, Nie Z, Yu J, Saraf LV, Yang Z, Liu J (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23:3155–3160

    Article  CAS  Google Scholar 

  8. He X, Wang J, Qiu B, Paillard E, Ma C, Cao X, Liu H, Stan MC, Liu H, Gallash T, Meng YS, Li J (2016) Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries. Nano Energy 27:602–610

    Article  CAS  Google Scholar 

  9. Longoni G, Wang JE, Jung YH, Kim DK, Mari CM, Ruffo R (2016) The Na2FeP2O7-carbon nanotubes composite as high rate cathode material for sodium ion batteries. J Power Sources 302:61–69

    Article  CAS  Google Scholar 

  10. Bianchini M, Brisset N, Fauth F, Weill F, Elkaim E, Suard E, Masquelier C, Croguennes L (2014) Na3V2(PO4)2F3 Revisited: A High-Resolution Diffraction Study. Chem Mater 264:238–4247

    Google Scholar 

  11. Lu Y, Wang L, Cheng J, Goodenough JB (2012) Prussian blue: a new framework of electrode materials for sodium batteries. Chem Commun 48:6544–6546

    Article  CAS  Google Scholar 

  12. Liang XH, Ou X, Zheng FH, Pan QC, Xiong XH, Hu RZ, Yang CH, Liu ML (2017) Surface Modification of Na3V2(PO4)3 by Nitrogen and Sulfur Dual-Doped Carbon Layer with Advanced Sodium Storage Property. ACS Appl Mater Interfaces 9:13151–13162

    Article  CAS  Google Scholar 

  13. Zhang Q, Wang W, Wang Y, Feng P, Wang K, Cheng S, Jiang K (2016) Controllable Construction of 3D-Skeleton-Carbon Coated Na3V2(PO4)3 for High-Performance Sodium Ion Battery Cathode. Nano Energy 20:11–19

    Article  Google Scholar 

  14. Chu ZL, Yue CB (2016) Core–shell structured Na3V2(PO4)3/C nanocrystals embedded in multi-walled carbon nanotubes: A high-performance cathode for sodium-ion batteries. Solid State Ionics 287:36–41

    Article  CAS  Google Scholar 

  15. Cheng J, Chen YJ, Sun SQ, Tian ZY, Wang C, Huang Q, Li D, Liu CC, He ZF, Guo L (2021) Boosting the rate capability and cycle life of Zr-substituted Na3V2(PO4)3/C enwrapped on carbon nanotubes for symmetric Na-ion batteries. Electrochimica Acta 385:138427

  16. Zhu CB, Song KP, Aken PA, Maier J, Yu Y (2014) Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180

    Article  CAS  Google Scholar 

  17. Fang YJ, Xiao LF, Ai XP, Cao YL, Yang HX (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900

    Article  CAS  Google Scholar 

  18. Li H, Bai Y, Wu F, Ni Q, Wu C (2015) Na3V2(PO4)3/C nanorods as advanced cathode material for sodium ion batteries. Solid State Ionics 278:281–286

    Article  CAS  Google Scholar 

  19. Zhou YX, Zhang LL, Yang XL, Huang YH, Ding XK, Ma D, Wang JQ (2017) Synthesis of nanosheet-structured Na3V2(PO4)3/C as high-performance cathode material for sodium ion batteries using anthracite as carbon source. Ceram Int 43:2333–2337

    Article  CAS  Google Scholar 

  20. Mao JF, Luo C, Gao T, Fan XL, Wang CS (2015) Scalable synthesis of Na3V2(PO4)3/C porous hollow spheres as a cathode for Na-ion batteries. J Mater Chem A 3:10378–10385

    Article  CAS  Google Scholar 

  21. Liu J, Tang K, Song KP, Aken PA, Yu Y, Maier J (2014) Electrospun Na3V2(PO4)3/C nanofibers as stable cathode materials for sodium-ion batteries. Nanoscale 6:5081–5086

    Article  CAS  Google Scholar 

  22. Chen L, Zhao YM, Liu SH, Zhao L (2017) Hard Carbon Wrapped Na3V2(PO4)3@C Porous Composite Extending Cycling Lifespan for Sodium-Ion Batteries. ACS Appl Mater Interfaces 9:44485–44493

    Article  CAS  Google Scholar 

  23. Zhang LL, Zhou YX, Li T, Ma D, Yang XL (2018) Multi-heteroatom doped carbon coated Na3V2(PO4)3 derived from ionic liquids. Dalton Trans 47:4259–4266

    Article  CAS  Google Scholar 

  24. Guo DL, Qin JW, Yin ZG, Bai JM, Sun YK, Cao MH (2018) Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45:136–147

    Article  CAS  Google Scholar 

  25. Chen HZ, Zhang B, Wang X, Dong PY, Tong H, Zheng JC, Yu WJ, Zhang JF (2018) CNT-Decorated Na3V2(PO4)3 Microspheres as a High-Rate and Cycle-Stable Cathode Material for Sodium Ion Batteries. ACS Appl Mater Interfaces 10:3590–3595

    Article  CAS  Google Scholar 

  26. Ren W, Zheng Z, Xu C, Niu C, Wei Q, Pan AQ, Zhao K, Yan M, Qin M, Mai LQ (2016) Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium-ion full batteries. Nano Energy 25:145–153

    Article  CAS  Google Scholar 

  27. Kretschmer K, Sun B, Zhang J, Xie X, Liu H, Wang G (2017) 3D interconnected carbon fiber network-enabled ultralong life Na3V2(PO4)3@carbon paper cathode for sodium- ion batteries. Small 13:1603318

    Article  Google Scholar 

  28. Klee R, Aragón MJ, Lavela P, Alcántara R, Tirado JL (2016) Na3V2(PO4)3/C Nanorods with Improved Electrode−Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. ACS Appl Mater Interfaces 8:23151–23159

    Article  CAS  Google Scholar 

  29. Wei TY, Yang GZ, Wang CX (2017) Bottom–up assembly of strongly-coupled Na3V2(PO4)3/C into hierarchically porous hollow nanospheres for high-rate and stable Na-ion storage. Nano Energy 39:363–370

    Article  CAS  Google Scholar 

  30. Huang HB, Luo SH, Liu CL, Yang Y, Zhai YC, Chang LJ, Li MQ (2019) Double-carbon coated Na3V2(PO4)3 as a superior cathode material for Na ion batteries. Appl Surf Sci 487:1159–1166

    Article  CAS  Google Scholar 

  31. Cao XX, Pan AQ, Yin B, Fang GZ, Wang YP, Kong XZ, Zhu T, Zhou J, Cao GZ, Liang SQ (2019) Nanoflake-constructed porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications. Nano Energy 60:312–323

    Article  CAS  Google Scholar 

  32. Zheng H, Chen X, Yang Y, Li L, Li GH, Guo ZP, Feng CQ (2017) Self-Assembled LiNi1/3Co1/3Mn1/3O2 Nanosheet Cathode with High Electrochemical Performance. ACS Appl Mater Interfaces 9:39560–39568

    Article  CAS  Google Scholar 

  33. Zhao YL, Cao XX, Fang GZ, Wang YP, Yang HL, Liang SQ, Pan AQ, Cao GZ (2018) Hierarchically carbon-coated Na3V2(PO4)3 nanoflakes for high-rate capability and ultralong cycle-life sodium ion batteries. Chem Eng J 339:162–169

    Article  CAS  Google Scholar 

  34. Li JW, Cao XX, Pan AQ, Zhao YL, Yang HL, Cao GZ, Liang SQ (2018) Nanoflake-assembled three-dimensional Na3V2(PO4)3/C cathode for high performance sodium ion batteries. Chem Eng J 335:301–308

    Article  CAS  Google Scholar 

  35. Li XM, Wang SJ, Tang X, Zang R, Li P, Li PX, Man ZM, Li C, Liu SS, Wu YH, Wang GX (2019) Porous Na3V2(PO4)3/C nanoplates for high-performance sodium storage. J Colloid Interf Sci 539:168–174

    Article  CAS  Google Scholar 

  36. Yang JF, Li DD, Wang XS, Zhang XX, Xu J, Chen JT (2020) Constructing micro-nano Na3V2(PO4)3/C architecture for practical high-loading electrode fabrication as superior-rate and ultralong-life sodium ion battery cathode. Energy Storage Mater 24:694–699

    Article  Google Scholar 

  37. Cheng J, Chen YJ, Wang YZ, Wang C, He ZF, Li D, Guo L (2020) Insights into the enhanced sodium storage property and kinetics based on the Zr/Si codoped Na3V2(PO4)3/C cathode with superior rate capability and long lifespan. J Power Sources 474:228632

  38. Chen YJ, Cheng J, Wang C, He ZF, Wang YZ, Li D, Guo L (2021) Simultaneous modified Na2.9V1.9Zr0.1(PO4)3/C@rGO as a superior high rate and ultralong lifespan cathode for symmetric sodium ion batteries. Chem Eng J 413:127451

  39. Sun SQ, Chen YJ, Cheng J, Tian ZY, Wang C, Wu GP, Liu CC, Wang YZ, Guo L (2021) Constructing dimensional gradient structure of Na3V2(PO4)3/C@CNTs-WC by wolfram substitution for superior sodium storage. Chem Eng J 15: 130453

  40. Chen YJ, Cheng J, Sun SQ, Tian ZY, Jiang XM, Wang YZ, He ZF, Liu CC, Huang Q, Guo L (2021) Constructing hierarchical porous Fe/F-codoped Na3V2(PO4)3/C composite enwrapped with carbon nanotubes as high-performance cathode for symmetric sodium ion batteries. J Power Sources 513: 230545

  41. Zhou QB, Wang LL, Li WY, Zeng SY, Zhao KN, Yang YJ, Wu Q, Liu MM, Huang QA, Zhang JJ, Sun XL (2021) Carbon-Decorated Na3V2(PO4)3 as Ultralong Lifespan Cathodes for High-Energy-Density Symmetric Sodium-Ion Batteries. ACS Appl Mater Interfaces 13:25036–25043

    Article  CAS  Google Scholar 

  42. Gao F, Tang ZY, Xue JJ (2007) Preparation and characterization of nano-particle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochim Acta 53:1939–1944

    Article  CAS  Google Scholar 

  43. Aragón MJ, Gutiérrez J, Klee R, Lavela P, Alcántara R, Tirado JL (2017) On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. J Electroanal Chem 784:47–54

    Article  Google Scholar 

  44. Cao JL, Wang Y, Wang L, Yu F, Ma J (2019) Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. Nano Lett 19:823–828

    Article  CAS  Google Scholar 

  45. Chen B, Kim D, Zhang Z, Lee M, Yong KJ (2021) MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting. Chem Eng J 422:130052

Download references

Acknowledgements

Financial supports provided by the National Natural Science Foundation of China (No. 2198073 and NSFC−U1903217), the Project of Hubei Provincial Science & Technology Department (No. 2018ACA147), and the Guizhou Provincial Education Department (No. KY [2018] 031) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuijin Yang or Chuanqi Feng.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 625 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zheng, H., Wang, S. et al. Construction of Na3V2(PO4)3/C nanoplate as cathode for stable sodium ion storage. Ionics 28, 981–988 (2022). https://doi.org/10.1007/s11581-021-04370-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04370-w

Keywords

Navigation