Skip to main content
Log in

Effect of acetylene black and carbon nanotube interlayer on polyethylene glycol–coated sulfur composite cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium sulfur batteries have been paid much attention due to their high theoretical specific capacity of 1675 mAh·g−1. However, the low conductivity and shuttle efficiency hinder commercial application. Acetylene black (AB) and multi-wall carbon nanotube (CNT) interlayer coating on polyethylene glycol (PEG)–coated sulfur composite cathode (S/AB/CNT@PEG) can improve the electrochemical performance of the composite cathode. Comparing the electrochemical performance of these two interlayers, the S/AB/CNT@PEG cathode with CNT interlayer could more effectively improve electrochemical performance of the composite cathode. Moreover, it delivers an initial discharge specific capacity of 1660.4 mAh/g at 0.1 C and a discharge specific capacity of 803.3 mAh/g after 100 cycles at 1 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xu HH, Qie L, Manthiram A (2016) An integrally-designed, flexible polysulfide host for high-performance lithium-sulfur batteries with stabilized lithium-metal anode. Nano Energy 26:224–232. https://doi.org/10.1016/j.nanoen.2016.05.028

    Article  CAS  Google Scholar 

  2. Ding N, Chien SW, Hor TSA, Liu ZL, Zong Y (2014) Key parameters in design of lithium sulfur batteries. J Power Sources 269:111–116. https://doi.org/10.1016/j.jpowsour.2014.07.008

    Article  CAS  Google Scholar 

  3. Lin Z, Nan CY, Ye YF, Guo JH, Zhu JF, Cairns EJ (2014) High-performance lithium/sulfur cells with a bi-functionally immobilized sulfur cathode. Nano Energy 9:408–416. https://doi.org/10.1016/j.nanoen.2014.08.003

    Article  CAS  Google Scholar 

  4. Xu XL, Wang SJ, Wang H, Xu B, Hu C, Jin Y, Liu JB, Yan H (2017) The suppression of lithium dendrite growth in lithium sulfur batteries: a review. J Energy Storage 13:387–400. https://doi.org/10.1016/j.est.2017.07.031

    Article  CAS  Google Scholar 

  5. Jung SC, Han YK (2016) Monoclinic sulfur cathode utilizing carbon for high-performance lithium sulfur batteries. J Power Sources 325:495–500. https://doi.org/10.1016/j.jpowsour.2016.06.057

    Article  CAS  Google Scholar 

  6. Huang YP, Sun XG, Wang J, Li X, Chen W, Liang GD (2018) Hydroxylated sandwich-structure interlayer as a polysulfide reservoir for lithium-sulfur battery. J Alloy Compd 776:187–193. https://doi.org/10.1016/j.jallcom.2018.10.146

    Article  CAS  Google Scholar 

  7. Feng Y, Wang G, Wang LY, Ju JG, Kang WM, Deng NP, Cheng B (2021) Taming polysulfides and facilitating redox: Novel interlayer based on chestnut-like and multi-level structural materials for ultra-stable lithium-sulfur batteries. J Alloy Compd 851:156859. https://doi.org/10.1016/j.jallcom.2020.156859

    Article  CAS  Google Scholar 

  8. Guang ZX, Huang Y, Chen C, Liu XD, Xu ZP, Dou WJ (2019) Engineering a light-weight, thin and dual-functional interlayer as “polysulfides sieve” capable of synergistic adsorption for high-performance lithium-sulfur batteries. Chem Eng J 383:123163. https://doi.org/10.1016/j.cej.2019.123163

    Article  CAS  Google Scholar 

  9. Liu QQ, Jiang Q, Jiang L, Peng JQ, Gao YK, Duan ZH, Lu XY (2018) Preparation of SnO2@rGO/CNTs/S composite and application for lithium-sulfur battery cathode material. Appl Surf Sci 462:393–398. https://doi.org/10.1016/j.apsusc.2018.08.038

    Article  CAS  Google Scholar 

  10. Yan LL, Xiao M, Wang SJ, Han DM, Meng YZ (2017) Edge sulfurized graphene nanoplatelets via vacuum mechano-chemical reaction for lithium-sulfur batteries. J Energy Chem 26:522–529. https://doi.org/10.1016/j.jechem.2016.12.001

    Article  Google Scholar 

  11. Feng JN, Qin XJ, Ma ZP, Yang J, Yang W, Shao GJ (2016) A novel acetylene black/sulfur@graphene composite cathode with unique three-dimensional sandwich structure for lithium-sulfur batteries. Electrochim Acta 190:426–433. https://doi.org/10.1016/j.electacta.2016.01.017

    Article  CAS  Google Scholar 

  12. Xu JH, Jin B, Li H, Jiang Q (2017) Sulfur/alumina/polypyrrole ternary hybrid material as cathode for lithium-sulfur batteries. Int J Hydrogen Energy 42:20749–20758. https://doi.org/10.1016/j.ijhydene.2017.06.205

    Article  CAS  Google Scholar 

  13. Guo J, Zhang MG, Yan SJ, Gao YN, Ma GH, Liu JS (2018) Synthesis of oxidized acetylene black/sulfur@Nd2O3 composite as cathode materials for lithium-sulfur batteries. J Nanopart Res 20:321. https://doi.org/10.1007/s11051-018-4408-y

    Article  CAS  Google Scholar 

  14. Xiao DJ, Lu CX, Chen CM, Yuan SX (2018) CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries. Energy Storage Mater 10:216–222. https://doi.org/10.1016/j.ensm.2017.05.015

    Article  Google Scholar 

  15. Jian ZX, Li HL, Cao R, Zhou HL, Xu HZ, Zhao GJ, Xing YL, Zhang SC (2019) Polydopamine-coated hierarchical tower-shaped carbon for high-performance lithium-sulfur batteries. Electrochim Acta 319:359–365. https://doi.org/10.1016/j.electacta.2019.06.145

    Article  CAS  Google Scholar 

  16. Zou YL, Duan JL, Qi ZG, Wang Y, Dong SJ, Li ZY (2018) Nonfilling polyaniline coating of sulfur/acetylene black for high-performance lithium sulfur batteries. J Electroanal Chem 811:46–52. https://doi.org/10.1016/j.jelechem.2018.01.037

    Article  CAS  Google Scholar 

  17. Guo J, Zhang MG, Yan XY, Yao SS, Cao XY, Liu JS (2019) A PEG-grafted carbon hybrid as sulfur host for high-performance lithium-sulfur batteries. J Nanopart Res 21:1–15. https://doi.org/10.1007/s11051-019-4507-4

    Article  CAS  Google Scholar 

  18. Ma GQ, Wen ZY, Wang QS, Shen C, Peng P, Jin J, Wu XW (2015) Enhanced performance of lithium sulfur battery with self-assembly polypyrrole nanotube film as the functional interlayer. J Power Sources 273:511–516. https://doi.org/10.1016/j.jpowsour.2014.09.141

    Article  CAS  Google Scholar 

  19. Wu HW, Huang Y, Zhang WC, Sun X, Yang YW, Wang L, Zong M (2017) Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries. J Alloys Compd 708:743–750. https://doi.org/10.1016/j.jallcom.2017.03.047

    Article  CAS  Google Scholar 

  20. Yao SS, Tang H, Liu MQ, Chen LL, Jing MX, Shen XQ, Li TB, Tan JL (2019) TiO2 nanoparticles incorporation in carbon nanofiber as a multifunctional interlayer toward ultralong cycle-life lithium-sulfur batteries. J Alloys Compd 788:639–648. https://doi.org/10.1016/j.jallcom.2019.02.236

    Article  CAS  Google Scholar 

  21. Manoj M, Muhamed AC, Jasna M, Anilkumar KM, Jinisha B, Pradeep VS, Jayalekshmi S (2019) Biomass-derived, activated carbon-sulfur composite cathode with a bifunctional interlayer of functionalized carbon nanotubes for lithium-sulfur cells. J Colloid Interface Sci 535:287–299. https://doi.org/10.1016/j.jcis.2018.09.096

    Article  CAS  PubMed  Google Scholar 

  22. Wei HJ, Liu Y, Zhai XL, Wang F, Ren XY, Tao F, Li TF, Wang GX, Ren FZ (2020) Application of carbon nanotube-based materials as interlayers in high-performance lithium-sulfur batteries: a review. Front Energy Res 8:585795. https://doi.org/10.3389/fenrg.2020.585795

    Article  Google Scholar 

  23. Pakki T, Mohan EH, Hebalkar NY, Adduru J, Bulusu SV, Srinivasan A, Manyravadi KM, Tata NR (2019) Flexible and free-standing carbon nanofiber matt derived from electrospun polyimide as an effective interlayer for high-performence lithium-sulfur batteries. J Mat Sci 54(12):9075–9087. https://doi.org/10.1007/s10853-019-03534-4

    Article  CAS  Google Scholar 

  24. Zhang AY, Fang X, Shen CF, Liu YH, Seo IG, Ma YQ, Chen L, Cottingham P, Zhou CW (2018) Functionalinterlayerofpvdf-hfpandcarbonnanofiberforlong-lifelithium-sulfurbatteries. Nano Reserch 11(6):SI3340–SI3352. https://doi.org/10.1007/s12274-017-1929-0

    Article  CAS  Google Scholar 

  25. Wu KS, Hu Y, Shen Z, Chen RZ, He X, Cheng ZL, Pan P (2018) Highly efficient and green fabrication of a modified C nanofiber interlayer for high-performance Li-S batteries. J Mater Chem A 6:2693–2699. https://doi.org/10.1039/c7ta09641k

    Article  CAS  Google Scholar 

  26. Hou JH, Tu XY, Wu XG, Shen M, WangXZ WCY, Cao CB, Pang H, Wang GX (2020) Remarkable cycling durability of lithium-sulfur batteries with interconnected mesoporous hollow carbon nanospheres as high sulfur content host. Chem Eng J 401:126141. https://doi.org/10.1016/j.cej.2020.126141

    Article  CAS  Google Scholar 

  27. Ding B, Xu GY, Shen LF, Nie P, Hu PF, Dou H, Zhang XG (2013) Fabrication of a sandwich structured electrode for high-performance lithium-sulfur batteries. J Mater Chem A 1:14280–14285. https://doi.org/10.1039/c3ta13430j

    Article  CAS  Google Scholar 

  28. Xing LB, Xi K, Li QY, Su Z, Lai C, Zhao XS, Kumar RV (2016) Nitrogen, sulfur-codoped graphene sponge as electroactive carbon interlayer for high-energy and -power lithium-sulfur batteries. J Power Sources 303:22–28. https://doi.org/10.1016/j.jpowsour.2015.10.097

    Article  CAS  Google Scholar 

  29. Lee DK, Ahn CW, Jeon HJ (2017) Web-structured graphitic carbon fiber felt as an interlayer for rechargeable lithium-sulfur batteries with highly improved cycling performance. J Power Sources 360:559–568. https://doi.org/10.1016/j.jpowsour.2017.06.048

    Article  CAS  Google Scholar 

  30. Zhang Z, Wang GC, Lai YQ, Li J (2016) A freestanding hollow carbon nanofiber/reduced graphene oxide interlayer for high-performance lithium-sulfur batteries. J Alloys Compd 663:501–506. https://doi.org/10.1016/j.jallcom.2015.11.120

    Article  CAS  Google Scholar 

  31. Su YS, Manthiram A (2012) A new approach to improve cycle performance of rechargeable lithium-sulfur batteries by inserting a free-standing MWCNT interlayer. Chem Commun 48:8817–8819. https://doi.org/10.1039/c2cc33945e

    Article  CAS  Google Scholar 

  32. Xiao ZB, Yang Z, Wang L, Nie HG, Zhong ME, Lai QQ, Xu XJ, Zhang LJ, Huang SM (2015) A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv Mater 27:2891–2898. https://doi.org/10.1002/adma.201405637

    Article  CAS  PubMed  Google Scholar 

  33. Zhang B, Lai C, Zhou Z, Gao XP (2009) Preparation and electrochemical properties of sulfur-acetylene black composites as cathode materials. Electrochim Acta 54:3708–3713. https://doi.org/10.1016/j.electacta.2009.01.056

    Article  CAS  Google Scholar 

  34. Chen JZ, Wu F, Chen RJ, Li L, Chen S (2013) Preparation of multi-wall carbon nanotube/S composites as cathodes for lithium/sulfur batteries. New Carbon Mater 28:428–434. https://doi.org/10.1016/j.carbon.2013.12.099

    Article  CAS  Google Scholar 

  35. Zeng P, Huang LW, Zhang XL, Han YM, Chen YG (2018) Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: Mechanism research and performance improvement. Appl Surf Sci 427:242–252. https://doi.org/10.1016/j.apsusc.2017.08.062

    Article  CAS  Google Scholar 

  36. Huang JQ, Xu ZL, Abouali S, Garakani MA, Kim JK (2016) Porous graphene oxide/carbon nanotube hybrid films as interlayer for lithium-sulfur batteries. Carbon 99:624–632. https://doi.org/10.1016/j.carbon.2015.12.081

    Article  CAS  Google Scholar 

  37. Wang LH, He YB, Shen L, Lei DN, Ma JM, Ye H, Shi K, Li BH, Kang FY (2018) Ultra-small self-discharge and stable lithium-sulfur batteries achieved by synergetic effects of multicomponent sandwich-type composite interlayer. Nano Energy 50:367–375. https://doi.org/10.1016/j.nanoen.2018.05.043

    Article  CAS  Google Scholar 

  38. Zhao Q, Zhu QZ, An YB, Chen RJ, Sun N, Wu F, Xu B (2018) A 3D conductive carbon interlayer with ultrahigh adsorption capability for lithium-sulfur batteries. Appl Surf Sci 440:770–777. https://doi.org/10.1016/j.apsusc.2018.01.162

    Article  CAS  Google Scholar 

  39. Xu HF, Shi YZ, Yang SB, Li B (2019) A linear molecule sulfur-rich organic cathode material for high performance lithium-sulfur batteries. J Power Sources 430:210–217. https://doi.org/10.1016/j.jpowsour.2019.05.022

    Article  CAS  Google Scholar 

  40. Sun Y, Wang SP, Cheng H, Dai Y, Yu JX, Wu JP (2015) Synthesis of a ternary polyaniline@acetylene black-sulfur material by continuous two-step liquid phase for lithium sulfur batteries. Electrochim Acta 158:143–151. https://doi.org/10.1016/j.electacta.2015.01.150

    Article  CAS  Google Scholar 

  41. Qu L, Liu P, Yi YK, Wang T, Yang P, Tian XL, Li MT, Yang BL, Dai S (2019) Enhanced cycling performance for lithium-sulfur batteries by a laminated 2D g-C3N4/graphene cathode interlayer. Chemsuschem 12:213–223. https://doi.org/10.1002/cssc.201802449

    Article  CAS  PubMed  Google Scholar 

  42. Zeng Q, Leng X, Wu KH, Gentle IR, Wang DW (2015) Electroactive cellulose-supported graphene oxide interlayers for Li-S batteries. Carbon 93:611–619. https://doi.org/10.1016/j.carbon.2015.05.095

    Article  CAS  Google Scholar 

  43. See KA, Hug S, Schwinghammer K, Lumley MA, Zheng YH, Nolt JM, Stucky GD, Wudl F, Lotsch BV, Seshadri R (2015) Lithium charge storage mechanisms of cross-linked triazine networks and their porous carbon derivatives. Chem Mater 27:3821–3829. https://doi.org/10.1021/acs.chemmater.5b00772

    Article  CAS  Google Scholar 

  44. Cui YH, Wu XJ, Wu JW, Zeng J, Baker AP, Lu F, Liang X, Ouyang J, Huang JY, Liu XB, Li ZF, Zhang XH (2017) An interlayer with architecture that limits polysulfides shuttle to give a stable performance Li-S battery. Energy Storage Mater 9:1–10. https://doi.org/10.1016/j.ensm.2017.06.007

    Article  Google Scholar 

  45. Yang K, Zhong L, Guan RT, Xiao M, Han DM, Wang SJ, Meng YZ (2018) Carbon felt interlayer derived from rice paper and its synergistic encapsulation of polysulfides for lithium-sulfur batteries. Appl Surf Sci 441:914–922. https://doi.org/10.1016/j.apsusc.2018.02.108

    Article  CAS  Google Scholar 

  46. Ying D, Xu XY, Cao CB, Chen Z (2019) Dual synergistic immobilization effect on lithium polysulfides for lithium-sulfur batteries. J Electroanal Chem 840:125–133. https://doi.org/10.1016/j.jelechem.2019.03.060

    Article  CAS  Google Scholar 

  47. Li XL, Chu LB, Wang YY, Pan LS (2016) Anchoring function for polysulfide ions of ultrasmall SnS2 in hollow carbon nanospheres for high performance lithium-sulfur batteries. Mater Sci Eng B-Adv 205:46–54. https://doi.org/10.1016/j.mseb.2015.12.002

    Article  CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial supports of the Taiyuan University of Science and Technology Scientific Research Initial Funding (20192035); Scientific and Technological Innovation Projects of Colleges and Universities in Shanxi Province (2020L0354); Graduate Students’ Excellent Innovation Project of Shanxi Province, China (Project No. 2019SY485); Jincheng Science and Technology Plan Project in Shanxi Province, China (Project No. 20198037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingang Zhang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Ma, G., Hu, K. et al. Effect of acetylene black and carbon nanotube interlayer on polyethylene glycol–coated sulfur composite cathode. Ionics 28, 619–627 (2022). https://doi.org/10.1007/s11581-021-04357-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04357-7

Keywords

Navigation