Skip to main content

Advertisement

Log in

Improving the stable Li+ storage performance by embedding reduced graphene oxide into cobalt gallium oxide as anode for Li-ion capacitor applications

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

After research, it is found that CoGa2O4, a gallium-based material with a dual energy storage mechanism, as the anode of a lithium-ion capacitor, has a good cycle stability. However, the nanoparticle CoGa2O4 is easy to agglomerate, which will affect its electrochemical performance. This article reports a CoGa2O4/RGO composite material acquired by an uncomplicated hydrothermal method. The agglomerations of CoGa2O4 nanoparticles were avoided by using RGO with high specific surface area. Here, the easily available distilled water is used as the solvent to avoid the use of additional surfactants. The prepared CoGa2O4/RGO composite material has a higher capacity and a longer cycle life, which is 4 times higher than the pure CoGa2O4. A device with activated carbon as the cathode was assembled to study its LIC performance, and after 10,000 cycles, the capacity retention rate of the assembled device can reach 89% and the coulomb efficiency can reach 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. An Z, Fang W, Xu J, Zhang J (2019) Comparative analysis of electrochemical performances and capacity degrading behaviors in lithium-ion capacitors based on different anodic materials. Ionics 25(7):3277–3285. https://doi.org/10.1007/s11581-019-02848-2

    Article  CAS  Google Scholar 

  2. Cheng CF, Chen YM, Zou F, Liu K, Xia Y, Huang YF, Tung WY, Krishnan MR, Vogt BD, Wang CL, Ho RM, Zhu Y (2019) Li-ion capacitor integrated with nano-network-structured Ni/NiO/C anode and nitrogen-doped carbonized metal-organic framework cathode with high power and long cyclability. ACS Appl Mater Interfaces 11(34):30694–30702. https://doi.org/10.1021/acsami.9b06354

    Article  CAS  PubMed  Google Scholar 

  3. Lu R, Ren X, Zhan C, Wang C, Lv R, Shen W, Kang F, Huang Z-H (2020) Facile synthesis of FeVO@C materials as high-performance composite cathode for lithium-ion hybrid capacitor. J Alloys Compd 835.https://doi.org/10.1016/j.jallcom.2020.155398

  4. Zhao E, Qin C, Jung HR, Berdichevsky G, Nese A, Marder S, Yushin G (2016) Lithium titanate confined in carbon nanopores for asymmetric supercapacitors. ACS Nano 10(4):3977–3984. https://doi.org/10.1021/acsnano.6b00479

    Article  CAS  PubMed  Google Scholar 

  5. Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q (2013) Hollow porous SiO2 nanocubes towards high-performance anodes for lithium-ion batteries. Sci Rep 3:1568. https://doi.org/10.1038/srep01568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun X, Zhang X, Liu W, Wang K, Li C, Li Z, Ma Y (2017) Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor. Electrochim Acta 235:158–166. https://doi.org/10.1016/j.electacta.2017.03.110

    Article  CAS  Google Scholar 

  7. Twisk F (2013) Rebuttal to Ickmans et al. association between cognitive performance, physical fitness, and physical activity level in women with chronic fatigue syndrome. J Rehabil Res Dev 50(6):795–810. www.rehab.research.va.gov/jour/2013/506/pdf/ickmans506.pdf. J Rehabil Res Dev 50 (9):vii–viii. https://doi.org/10.1039/c4ta00670d

  8. Wang H, Zhang Y, Ang H, Zhang Y, Tan HT, Zhang Y, Guo Y, Franklin JB, Wu XL, Srinivasan M, Fan HJ, Yan Q (2016) A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode. Adv Funct Mater 26(18):3082–3093. https://doi.org/10.1002/adfm.201505240

    Article  CAS  Google Scholar 

  9. Chen J-X, Zhao D-L, Yao R-R, Li C, Wang X-J, Sun F-F (2017) Hedgehog-like CuO/nitrogen-doped graphene nanocomposite for high-performance lithium-ion battery anodes. J Alloys Compd 714:419–424. https://doi.org/10.1016/j.jallcom.2017.04.171

    Article  CAS  Google Scholar 

  10. Liu C, Zhang C, Fu H, Nan X, Cao G (2017) Exploiting high-performance anode through tuning the character of chemical bonds for Li-ion batteries and capacitors. Adv Energy Mater 7(1):1601127

  11. Wen Y, Chen L, Pang Y, Guo Z, Bin D, Wang YG, Wang C, Xia Y (2017) TiP2O7 and expanded graphite nanocomposite as anode material for aqueous lithium-ion batteries. ACS Appl Mater Interfaces 9(9):8075–8082. https://doi.org/10.1021/acsami.6b14856

    Article  CAS  PubMed  Google Scholar 

  12. Zhang S, Li C, Zhang X, Sun X, Wang K, Ma Y (2017) High performance lithium-ion hybrid capacitors employing Fe3O4-graphene composite anode and Activated carbon cathode. ACS Appl Mater Interfaces 9(20):17136–17144. https://doi.org/10.1021/acsami.7b03452

    Article  CAS  PubMed  Google Scholar 

  13. Wang R, Yan X, Lang J, Zheng Z, Zhang P (2014) A hybrid supercapacitor based on flower-like Co(OH)2 and urchin-like VN electrode materials. J Mater Chem A 2(32):12724–12732. https://doi.org/10.1039/c4ta01296h

    Article  CAS  Google Scholar 

  14. Yuan C, Yang L, Hou L, Shen L, Zhang X, Lou XW (2012) Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors. Energy Environ Sci 5(7):7883. https://doi.org/10.1039/c2ee21745g

    Article  CAS  Google Scholar 

  15. Chai H, Dong H, Wang Y, Xu J, Jia D (2017) Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications. Appl Surf Sci 401:399–407. https://doi.org/10.1016/j.apsusc.2017.01.012

    Article  CAS  Google Scholar 

  16. Du J, Zhou G, Zhang H, Cheng C, Ma J, Wei W, Chen L, Wang T (2013) Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors. ACS Appl Mater Interfaces 5(15):7405–7409. https://doi.org/10.1021/am4017335

    Article  CAS  PubMed  Google Scholar 

  17. Hui KN, Hui KS, Tang Z, Jadhav VV, Xia QX (2016) Hierarchical chestnut-like MnCo2O4 nanoneedles grown on nickel foam as binder-free electrode for high energy density asymmetric supercapacitors. J Power Sources 330:195–203. https://doi.org/10.1016/j.jpowsour.2016.08.116

    Article  CAS  Google Scholar 

  18. Wu C, Cai J, Zhang Q, Zhou X, Zhu Y, Li L, Shen P, Zhang K (2015) Direct growth of urchin-like ZnCo2O4 microspheres assembled from nanowires on nickel foam as high-performance electrodes for supercapacitors. Electrochim Acta 169:202–209. https://doi.org/10.1016/j.electacta.2015.04.079

    Article  CAS  Google Scholar 

  19. Kocsis V, Bordács S, Deisenhofer J, Kiss LF, Ohgushi K, Kaneko Y, Tokura Y, Kézsmárki I (2018) Strong magneto-optical effects in ACr2O4(A=Fe,Co) spinel oxides generated by tetrahedrally coordinated transition metal ions. Phys Rev B 97(12). https://doi.org/10.1103/PhysRevB.97.125140

  20. Lai C, Chen J, Knight JC, Manthiram A, Navrotsky A (2016) Thermodynamic stability of transition-metal-substituted LiMn2-x Mx O4 (M=Cr, Fe Co, and Ni) spinels. ChemPhysChem 17(13):1973–1978. https://doi.org/10.1002/cphc.201600120

    Article  CAS  PubMed  Google Scholar 

  21. Shao M, Ning F, Zhao Y, Zhao J, Wei M, Evans, DG, Duan X (2012) Core–shell layered double hydroxide microspheres with tunable interior architecture for supercapacitors. Chem Mater 24(6):1192–1197

  22. Zhang L, Gong H (2016) Unexpected properties of gallium incorporated nickel oxide for electrochemical energy storage. Electrochim Acta 191:270–274. https://doi.org/10.1016/j.electacta.2016.01.071

    Article  CAS  Google Scholar 

  23. He Z-H, Gao J-F, Kong L-B (2019) NiGa2O4 nanosheets in a microflower architecture as anode materials for Li-Ion capacitors. ACS Appl Nano Mater 2(10):6238–6248. https://doi.org/10.1021/acsanm.9b01222

    Article  CAS  Google Scholar 

  24. Srivastava M, Elias Uddin M, Singh J, Kim NH, Lee JH (2014) Preparation and characterization of self-assembled layer by layer NiCo2O4–reduced graphene oxide nanocomposite with improved electrocatalytic properties. J Alloys Compd 590:266–276. https://doi.org/10.1016/j.jallcom.2013.12.111

    Article  CAS  Google Scholar 

  25. Wang C, Ma L, Liao L, Bai S, Long R, Zuo M, Xiong Y (2013) A unique platinum-graphene hybrid structure for high activity and durability in oxygen reduction reaction. Sci Rep 3:2580. https://doi.org/10.1038/srep02580

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gao S, Yang X, Wei M-J, Liang S, Zang H-Y, Tan H-Q, Wang Y-H, Li Y-G (2018) One-step synthesis of Pt based electrocatalysts encapsulated by polyoxometalate for methanol oxidation. New J Chem 42(1):198–203. https://doi.org/10.1039/c7nj03593d

    Article  CAS  Google Scholar 

  27. Wu S, Liu J, Tian Z, Cai Y, Ye Y, Yuan Q, Liang C (2015) Highly dispersed ultrafine Pt nanoparticles on reduced graphene oxide nanosheets: In Situ Sacrificial Template Synthesis and Superior Electrocatalytic Performance for Methanol Oxidation. ACS Appl Mater Interfaces 7(41):22935–22940. https://doi.org/10.1021/acsami.5b06153

    Article  CAS  PubMed  Google Scholar 

  28. Han N, Chen D, Pang Y, Han Z, Xia Y, Jiao X (2017) Structural regulation of ZnGa2O4 nanocubes for achieving high capacity and stable rate capability as an anode material of lithium ion batteries. Electrochim Acta 235:295–303. https://doi.org/10.1016/j.electacta.2017.03.122

    Article  CAS  Google Scholar 

  29. Xu Z, Yan SC, Shi Z, Yao YF, Zhou P, Wang HY, Zou ZG (2016) Adjusting the crystallinity of mesoporous spinel CoGa2O4 for efficient water oxidation. ACS Appl Mater Interfaces 8(20):12887–12893. https://doi.org/10.1021/acsami.6b03890

    Article  CAS  PubMed  Google Scholar 

  30. Liu D, Mo X, Li K, Liu Y, Wang J, Yang T (2017) The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J Power Sources 359:355–362. https://doi.org/10.1016/j.jpowsour.2017.05.080

    Article  CAS  Google Scholar 

  31. Javed MS, Shah SSA, Najam T, Siyal SH, Hussain S, Saleem M, Zhao Z, Mai W (2020) Achieving high-energy density and superior cyclic stability in flexible and lightweight pseudocapacitor through synergic effects of binder-free CoGa2O4 2D-hexagonal nanoplates. Nano Energy 77.https://doi.org/10.1016/j.nanoen.2020.105276

  32. Zhang J, Chu R, Chen Y, Jiang H, Zhang Y, Huang NM, Guo H (2018) Electrodeposited binder-free NiCo2O4@carbon nanofiber as a high performance anode for lithium ion batteries. Nanotechnology 29(12):125401. https://doi.org/10.1088/1361-6528/aaa94c

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang B, Guo Z, Chu W, Cao Z, Bold T, Gao Y (2018) Mesoporous carbon film inlaid with Li3V2(PO4)3 nanoclusters through delaying sol-gel method for high performance lithium-ion hybrid supercapacitors. Electrochim Acta 283:1589–1599. https://doi.org/10.1016/j.electacta.2018.07.128

    Article  CAS  Google Scholar 

  34. Kalantzopoulos GN, Lundvall F, Checchia S, Lind A, Wragg DS, Fjellvag H, Arstad B (2018) In situ flow MAS NMR spectroscopy and synchrotron PDF analyses of the local response of the bronsted acidic site in SAPO-34 during hydration at elevated temperatures. ChemPhysChem 19(4):519–528. https://doi.org/10.1002/cphc.201700973

    Article  CAS  PubMed  Google Scholar 

  35. Liu S, Hui KS, Hui KN, Li H-F, Ng KW, Xu J, Tang Z, Jun SC (2017) An asymmetric supercapacitor with excellent cycling performance realized by hierarchical porous NiGa2O4 nanosheets. J Mater Chem A 5(36):19046–19053. https://doi.org/10.1039/c7ta05493a

    Article  CAS  Google Scholar 

  36. Mo Y, Ru Q, Song X, Hu S, Guo L, Chen X (2015) 3-dimensional porous NiCo2O4 nanocomposite as a high-rate capacity anode for lithium-ion batteries. Electrochim Acta 176:575–585. https://doi.org/10.1016/j.electacta.2015.07.049

    Article  CAS  Google Scholar 

  37. Li F-F, Gao J-F, He Z-H, Kong L-B (2020) Design and synthesis of CoP/r-GO hierarchical architecture: dominated pseudocapacitance, fasted kinetics features, and Li-Ion capacitor applications. ACS Appl Energy Mater 3(6):5448–5461. https://doi.org/10.1021/acsaem.0c00440

    Article  CAS  Google Scholar 

  38. Chen H, Li G-D, Fan M, Gao Q, Hu J, Ao S, Wei C, Zou X (2017) Electrospinning preparation of mesoporous spinel gallate (MGa2O4; M Ni, Cu, Co) nanofibers and their M(II) ions-dependent gas sensing properties. Sensors Actuators B Chem 240:689–696. https://doi.org/10.1016/j.snb.2016.09.037

    Article  CAS  Google Scholar 

  39. Narayanan Naresh, Bernaurdshaw Neppolian (2020) Reduced graphene oxide supported NiCo2O4 nano-rods: an efficient, stable and cost-effective electrocatalyst for methanol oxidation reaction. ChemCatChem 12(3):771–780. https://doi.org/10.1002/cctc.201901496

    Article  CAS  Google Scholar 

  40. Narayanan N, Bernaurdshaw N (2019) Reduced graphene oxide supported NiCo2O4 nano-rods: an efficient, stable and cost-effective electrocatalyst for methanol oxidation reaction. ChemCatChem 12(3):771–780. https://doi.org/10.1002/cctc.201901496

    Article  CAS  Google Scholar 

  41. Fu Y, Peng C, Zha D, Zhu J, Zhang L, Wang X (2018) Surface pore-containing NiCo2O4 nanobelts with preferred (311) plane supported on reduced graphene oxide: a high-performance anode material for lithium-ion batteries. Electrochim Acta 271:137–145. https://doi.org/10.1016/j.electacta.2018.03.142

    Article  CAS  Google Scholar 

  42. Han C, Xu L, Li H, Shi R, Zhang T, Li J, Wong C-P, Kang F, Lin Z, Li B (2018) Biopolymer-assisted synthesis of 3D interconnected Fe3O4@carbon core@shell as anode for asymmetric lithium ion capacitors. Carbon 140:296–305. https://doi.org/10.1016/j.carbon.2018.09.010

    Article  CAS  Google Scholar 

  43. Mo Y, Ru Q, Chen J, Song X, Guo L, Hu S, Peng S (2015) Three-dimensional NiCo2O4 nanowire arrays: preparation and storage behavior for flexible lithium-ion and sodium-ion batteries with improved electrochemical performance. J Mater Chem A 3(39):19765–19773. https://doi.org/10.1039/c5ta05931c

    Article  CAS  Google Scholar 

  44. Huang Y, Ouyang J, Tang X, Yang Y, Qian J, Lu J, Xiao L, Zhuang L (2019) NiGa2O4/rGO Composite as long-cycle-life anode material for lithium-ion batteries. ACS Appl Mater Interfaces 11(8):8025–8031. https://doi.org/10.1021/acsami.8b21581

    Article  CAS  PubMed  Google Scholar 

  45. Du H, Yuan C, Huang K, Wang W, Zhang K, Geng B (2017) A novel gelatin-guided mesoporous bowknot-like Co3O4 anode material for high-performance lithium-ion batteries. J Mater Chem A 5(11):5342–5350. https://doi.org/10.1039/c6ta10327h

    Article  CAS  Google Scholar 

  46. Leng X, Wei S, Jiang Z, Lian J, Wang G, Jiang Q (2015) Carbon-encapsulated Co3O4 nanoparticles as anode materials with super lithium storage performance. Sci Rep 5:16629. https://doi.org/10.1038/srep16629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yan C, Chen G, Sun J, Zhou X, Lv C (2016) A novel anode comprised of C&N co-doped Co3O4 hollow nanofibres with excellent performance for lithium-ion batteries. Phys Chem Chem Phys 18(29):19531–19535. https://doi.org/10.1039/C6CP02660E

    Article  CAS  PubMed  Google Scholar 

  48. Li L, Jiang G, Sun R, Cao B (2017) Two-dimensional porous Co3O4 nanosheets for high-performance lithium ion batteries. New J Chem 41(24):15283–15288. https://doi.org/10.1039/C7NJ03415F

    Article  CAS  Google Scholar 

  49. Yang D, Zhao Q, Huang L, Xu B, Kumar NA, Zhao XS (2018) Encapsulation of NiCo2O4 in nitrogen-doped reduced graphene oxide for sodium ion capacitors. J Mater Chem A 6(29):14146–14154. https://doi.org/10.1039/c8ta03411g

    Article  CAS  Google Scholar 

  50. Tang X, Huang X, Huang Y, Gou Y, Pastore J, Yang Y, Xiong Y, Qian J, Brock JD, Lu J, Xiao L, Abruña HD, Zhuang L (2018) High-performance Ga2O3 anode for lithium-ion batteries. ACS Appl Mater Interfaces 10(6):5519–5526. https://doi.org/10.1021/acsami.7b16127

    Article  CAS  PubMed  Google Scholar 

  51. Tang X, Liu H, Guo X, Wang S, Wu W, Mondal AK, Wang C, Wang G (2018) A novel lithium-ion hybrid capacitor based on an aerogel-like MXene wrapped Fe2O3 nanosphere anode and a 3D nitrogen sulphur dual-doped porous carbon cathode. Mater Chem Front 2(10):1811–1821. https://doi.org/10.1039/C8QM00232K

    Article  CAS  Google Scholar 

  52. Xu J, Liao Z, Zhang J, Gao B, Chu PK, Huo K (2018) Heterogeneous phosphorus-doped WO3−x/nitrogen-doped carbon nanowires with high rate and long life for advanced lithium-ion capacitors. J Mater Chem A 6(16):6916–6921. https://doi.org/10.1039/c8ta00639c

    Article  CAS  Google Scholar 

  53. Li GC, Yin ZL, Guo HJ, Wang ZX, Yan GC, Yang ZW, Liu Y, Ji XB, Wang JX (2019) Metalorganic quantum dots and their graphene-like derivative porous graphitic carbon for advanced lithium-ion hybrid supercapacitor. Adv Energy Mater 9(2):1802878. https://doi.org/10.1002/aenm.201802878

    Article  CAS  Google Scholar 

  54. MuraleeGopiChandu VV, Singh Rana PJ, Padma R, Vinodh R, Kim H-J (2019) Selective integration of hierarchical nanostructured energy materials: an effective approach to boost the energy storage performance of flexible hybrid supercapacitors. J Mater Chem A 7(11):6374–6386. https://doi.org/10.1039/c8ta12508b

    Article  CAS  Google Scholar 

  55. Jiang J, Nie P, Ding B, Wu W, Chang Z, Wu Y, Dou H, Zhang X (2016) Effect of graphene modified Cu current collector on the performance of Li4Ti5O12 anode for lithium-ion batteries. ACS Appl Mater Interfaces 8(45):30926–30932. https://doi.org/10.1021/acsami.6b10038

    Article  CAS  PubMed  Google Scholar 

  56. He Z-H, Gao J-F, Kong L-B (2019) Polycationic bimetallic oxide CoGa2O4 with spinel structure: dominated pseudocapacitance, dual-energy storage mechanism, and Li-ion hybrid supercapacitor application. Ionics 26(3):1379–1388. https://doi.org/10.1007/s11581-019-03249-1

    Article  CAS  Google Scholar 

  57. Wang X, Li G, Tjandra R, Fan X, Xiao X, Yu A (2015) Fast lithium-ion storage of Nb2O5 nanocrystals in situ grown on carbon nanotubes for high-performance asymmetric supercapacitors. RSC Adv 5(51):41179–41185. https://doi.org/10.1039/c5ra05140a

    Article  CAS  Google Scholar 

  58. Aravindan V, Shubha N, Chui Ling W, Madhavi S (2013) Constructing high energy density non-aqueous Li-ion capacitors using monoclinic TiO2-B nanorods as insertion host. J Mater Chem A 1(20):6145. https://doi.org/10.1039/c3ta11103b

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51971104, 51762031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling-Bin Kong.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Calculation of b value, capacitance contribution, energy densities and power densities of CoGa2O4/RGO.

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Gao, JF., He, ZH. et al. Improving the stable Li+ storage performance by embedding reduced graphene oxide into cobalt gallium oxide as anode for Li-ion capacitor applications. Ionics 27, 4153–4165 (2021). https://doi.org/10.1007/s11581-021-04195-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04195-7

Keywords

Navigation