Skip to main content
Log in

Extraction of tetrahedral CuCl anode from the waste copper etchant and surface modification with graphene quantum dots

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this article, CuCl crystal was extracted from the waste copper etchant via one-step facile electrodeposition and further modified with graphene quantum dots (GQDs) via the electrophoretic deposition. Moreover, the feasibility as the anode in lithium ion battery was also evaluated. As expected, the obtained CuCl crystal particles appeared as the tetrahedron-like morphology, and the surface became rougher after modification of GQDs via the electrophoretic deposition. The reversible specific discharge capacity of GQDs/CuCl/Cu anode was 345.0 mAh·g−1 at 2.0 C for 250 cycles, higher than 284.6 mAh·g−1 of bare CuCl anode possibly owed to higher electric conductivity and Li-storage activity of GQDs. Obviously, such efforts would alleviate the environmental pollution and facilitate the circular economy of the waste copper etchant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ming Z, Xiu F, Rovetta A, Qi H, Vicentini F, Bingkai L, Giusti A, Yi L (2009) Municipal solid waste management in Pudong new area China. Waste Manage 29:1227–1233

    Article  Google Scholar 

  2. Seng B, Kaneo HK, Hirayama K, Katayama HK (2010) Municipal solid waste management in Phnom Penh, capital city of Cambodia. Waste Manage Res 29:491–500

    Article  Google Scholar 

  3. Geng Y, Doberstein B (2008) Developing the circular economy in China: challenges and opportunities for achieving “leapfrog development.” Int J Sustain Dev World Ecol 15:231–239

    Article  Google Scholar 

  4. Huang K, Guo J, Xu Z (2009) Recycling of waste printed circuit boards: a review of current technologies and treatment status in China. J Hazard Mater 164:399–408

    Article  CAS  PubMed  Google Scholar 

  5. Ni HG, Zeng EY (2009) Law enforcement and global collaboration are the keys to containing e waste tsunami in China. Environ Sci Technol 43:3991–3994

    Article  CAS  PubMed  Google Scholar 

  6. Kobayashi T, Kano K, Suzuki T (2011) A novel technology for on-site cupric oxide recovery from cupric chloride etchant waste. Water Sci Technol 64:416–422

    Article  CAS  PubMed  Google Scholar 

  7. Almeida C, Bonilla S, Giannetti B, Huisingh D (2013) Cleaner production initiatives and challenges for a sustainable world: an introduction to this special volume. J Clean Prod 47:1–10

    Article  Google Scholar 

  8. Hadi P, Xu M, Lin CSK, Hui CW, Mckay G (2015) Waste printed circuit board recycling techniques and product utilization. J Hazard Mater 283:234–243

    Article  CAS  PubMed  Google Scholar 

  9. Wäger P, Hischier R, Eugster M (2011) Environmental impacts of the Swiss collection and recovery systems for waste electrical and electronic equipment (WEEE): a follow-up. Sci Total Environ 409:1746–1756

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi T, Kano K, Suzuki T, Kobayashi A (2011) A novel technology for on-site cupric oxide recovery from cupric chloride etchant waste. Water Sci Technol 64:416–422

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Li J, Tan Q, Liu L, Dong Q (2017) Green process of metal recycling: co-processing waste printed circuit boards and spent tin stripping solution. ACS Sustain Chem Eng 5:3524–3534

    Article  CAS  Google Scholar 

  12. Lee MS, Ahn JG, Ahn JW (2003) Recovery of copper, tin and lead from the spent nitric etching solutions of printed circuit board and regeneration of the etching solution. Hydrometallurgy 70:23–29

    Article  CAS  Google Scholar 

  13. Ogunniyi IO, Vermaak MKG (2009) Investigation of froth flotation for beneficiation of printed circuit board comminution fines. Miner Eng 22:378–385

    Article  CAS  Google Scholar 

  14. Huang Z, Xie F, Ma Y (2011) Ultrasonic recovery of copper and iron through the simultaneous utilization of printed circuit boards (PCB) spent acid etching solution and PCB waste sludge. J Hazard Mater 185:155–161

    Article  CAS  PubMed  Google Scholar 

  15. Sze YKP, Wong JC (1994) A study of a solvent extraction method for the regeneration of ammoniacal etching solutions of copper. Environ Technol 15:785–793

    Article  CAS  Google Scholar 

  16. Lee JC, Zhu T, Jha MK, Kim SK, Yoo KK, Jeong J (2008) Solvent extraction of Cu(I) from waste etch chloride solution using tributyl phosphate (TBP) diluted in 1-octanol. Sep Purif Technol 62:596–601

    Article  CAS  Google Scholar 

  17. Yang Z, Huang C, Ji X, Wang Y (2013) A new electrolytic method for on-site regeneration of acidic copper (II) chloride etchant in printed circuit board production. Int J Electrochem Sci 8:6258–6268

    CAS  Google Scholar 

  18. Oxley JE (1995) Electrolytic regeneration of acid cupric chloride etchant, US Patent US5421966A

  19. Yang Q, Kocherginsky N (2006) Copper recovery and spent ammoniacal etchant regeneration based on hollow fiber supported liquid membrane technology: from bench-scale to pilot-scale tests. J Membr Sci 286:301–309

    Article  CAS  Google Scholar 

  20. Mdlovu NV, Chiang CL, Lin KS, Jeng RC (2018) Recycling copper nanoparticles from printed circuit board waste etchants via a microemulsion process. J Cleaner Prod 185:781–796

    Article  CAS  Google Scholar 

  21. Liu S, Hou H, Liu X, Duan J, Yao Y, Liao Q, Li J, Yang Y (2017) Recycled hierarchical tripod-like CuCl from Cu-PCB waste etchant for lithium ion battery anode. J Hazard Mater 324:357–364

    Article  CAS  PubMed  Google Scholar 

  22. Natarajan G, Kumar RTR, Daniels S (2008) Electrical studies on sputtered CuCl thin films. J Mater Sci Mater Electron 19:103–106

    Article  CAS  Google Scholar 

  23. Hajipour AR, Nazemzadeh SH, Mohammadsaleh F (2014) Choline chloride/CuCl as an effective homogeneous catalyst for palladium-free Sonogashira cross-coupling reactions. Tetrahedron Lett 55:654–656

    Article  CAS  Google Scholar 

  24. Ames JR, Ryan MD, Kovacic P (1986) Mechanism of antibacterial action: electron transfer and oxy radicals. J Free Radicals Biology Medicine 2:377–391

    Article  CAS  Google Scholar 

  25. Wang X, Luo N, Ying S (2000) Synthesis of SBS-g-PMMA with well-controlled branch chain by “living” radical polymerization. China Synth Rubber Industry 23:13–19

    Google Scholar 

  26. Sun HJ, Wu L, Wei WL, Qu XG (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  CAS  Google Scholar 

  27. Kepic DP, Markovic ZM, Jovanovic SP, Perusko DB, Budimir MD, Holclajtner DI, Pavlovic VB, Todorovic-Markovic BM (2014) Preparation of PEDOT:PSS thin films doped with graphene and graphene quantum dots. Synth Met 198:150–154

    Article  CAS  Google Scholar 

  28. Marković ZM, Labudová M, Danko M, Matijašević D, Mičušík M, Nádaždy V, Kováčová M, Kleinová A, Špitalský Z, Pavlović V, Milivojević DD, Medić M, TodorovićMarković BM (2020) Highly efficient antioxidant F- and Cl-doped carbon quantum dots for bioimaging ACS Sustain. Chem Eng 8(43):16327–16338

    Google Scholar 

  29. Stankovic N, Todorovic-Markovic B, Markovic Z (2020) Self-assembly of carbon-based nanoparticles films by Langmuir-Blodgett method. J Serb Chem Soc 85:1095–1127

    Article  CAS  Google Scholar 

  30. He G, Song Y, Liu K (2013) Oxygen reduction catalyzed by platinum nanoparticles supported on graphene quantum dots. ACS Catal 3:831–838

    Article  CAS  Google Scholar 

  31. Liu WE, Feng YK, Yan X (2013) Superior micro-supercapacitors based on graphene quantum dots. Adv Funct Mater 23:4111–4122

    Article  CAS  Google Scholar 

  32. Liu WW, Yan X, Chen J, Feng Y, Xue Q (2013) Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale 5:6053–6062

    Article  CAS  PubMed  Google Scholar 

  33. Gupta V, Chaudhary N, Srivastava R, Sharma GD, Bhardwaj R, Chand S (2011) Luminscent graphene quantum dots for organic photovoltaic devices. J Am Chem Soc 133:9960–9963

    Article  CAS  PubMed  Google Scholar 

  34. Zhao J, Chen G, Zhu L, Li G (2011) Graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33

    Article  CAS  Google Scholar 

  35. Dong Y, Shao J, Chen C, Li H, Wang R, Chi Y, Lin X, Chen G (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50:4738–4743

    Article  CAS  Google Scholar 

  36. Ananthanarayanan A, Wang XW, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P (2014) Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing. Adv Funct Mater 24:3021–3026

    Article  CAS  Google Scholar 

  37. Wang G, Guo Q, Chen D, Liu Z, Zheng X, Xu A (2018) Facile and highly effective synthesis of controllable lattice sulfur-doped graphene quantum dots via hydrothermal treatment of durian. ACS Appl Mater Interf 10:5750–5759

    Article  CAS  Google Scholar 

  38. Wang JL, Xu CC, Lv GC (2016) Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media. Appl Surf Sci 252:6294–6303

    Article  CAS  Google Scholar 

  39. Lee CH, Hyun CY, Lee JH (2019) Deposition of pure Cu films on glass substrates by decomposition of Cu complex pastes at 250 °C and additional Cu plating, Appl. Surf Sci 473:359–365

    Article  CAS  Google Scholar 

  40. Park J, Moon J, Kim C, Kang J (2016) Graphene quantum dots: structural integrity and oxygen functional groups for high sulfur/sulfide utilization in lithium sulfur batteries. NPG Asia Materi 8:272–282

    Article  CAS  Google Scholar 

  41. Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D (2018) Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrogen Energy 43:3253–3260

    Article  CAS  Google Scholar 

  42. Marković ZM, Jovanović SP, Mašković PZ, Mojsin MM, Stevanović MJ, Danko M, Mičušík M, Jovanović DJ, Kleinová A, Špitalský Z, Pavlović VB, TodorovićMarković BM (2019) Graphene oxide size and structure pro-oxidant and antioxidant activity and photoinduced cytotoxicity relation on three cancer cell lines. J Photochem Photobiol B Biol 200:111647–111656

    Article  CAS  Google Scholar 

  43. Hou HY, Dai ZP, Liu XX, Yao Y, Liao QS, Yu CY, Li DD (2018) Reutilization of the expired tetracycline for lithium ion battery anode. Sci Total Environ 630:495–501

    Article  CAS  PubMed  Google Scholar 

  44. Liu S, Hou HY, Hu W, Liu XX, Duan JX, Meng RJ (2016) Binder-free integration of insoluble cubic CuCl nanoparticles with a homologous Cu substrate for lithium ion batteries. RSC Adv 6:3742–3747

    Article  CAS  Google Scholar 

  45. Park SK, Jin A, Yu SH (2014) In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochim Acta 120:452–459

    Article  CAS  Google Scholar 

  46. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature Mater 9:146–151

    Article  CAS  Google Scholar 

  47. Augustyn V, Come J, Lowe MA, Kim JW, Taberna PL, Tolbert SH, Abruña HD, Simon P, Dunn B (2013) High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nature Mater 12:518–522

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51566006) and the 19th Young Academic and Technical Leaders of Yunnan Province (1097–10978240).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Hou.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Lan, J., Zhu, J. et al. Extraction of tetrahedral CuCl anode from the waste copper etchant and surface modification with graphene quantum dots. Ionics 27, 4383–4391 (2021). https://doi.org/10.1007/s11581-021-04187-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04187-7

Keywords

Navigation