Skip to main content

Advertisement

Log in

Research on temperature control performance of battery thermal management system composited with multi-channel parallel liquid cooling and air cooling

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Power battery is the core parts of electric vehicle, which directly affects the safety and usability of electric vehicle. Aiming at the problems of heat dissipation and temperature uniformity of battery module, a battery thermal management system composited with multi-channel parallel liquid cooling and air cooling is proposed. Firstly, the simulation model of composite system is established from the system level, and the corresponding thermal performance is analyzed under different ambient temperature and charge/discharge rate. Then, the thermal management system is optimized from the aspect of coolant flow direction and control strategy. The results show that changing the coolant flow direction can reduce the temperature difference of the battery module to within 3°C, but it is not conducive to controlling the maximum temperature of the battery. With the intelligent PID control strategy, the temperature of the battery fluctuates smoothly and stays between 41 and 42°C, and the temperature of the battery module is more evenly distributed with the temperature difference within 2°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li JW, Zhang HY (2020) Thermal characteristics of power battery module with composite phase change material and external liquid cooling. Int J Heat Mass Tran 156, 119820

  2. Wang JX, Guo W, Xiong K, Wang (2020) Review of aerospace-oriented spray cooling technology. Prog Aerosp Sci 116, 100635

  3. Yang Y, Xu XM, Zhang YG, Li C (2020) Synergy analysis on the heat dissipation performance of a battery pack under air cooling. Ionics 26:5575–5584

    Article  CAS  Google Scholar 

  4. Yang W, Zhou F, Zhou HB, Wang QZ, Kong JZ (2020) Thermal performance of cylindrical lithium-ion battery thermal management system integrated with mini-channel liquid cooling and air cooling. Appl Therm Eng 175:115331

    Article  CAS  Google Scholar 

  5. Park CJA (2003) Dynamic thermal model of Li-ion battery for predictive behavior in hybrid and fuel cell vehicles. SAE tech pap 112:1835–1842

    Google Scholar 

  6. Liang JL, Gan YH, Li Y (2018) Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manag 155:1–9

    Article  Google Scholar 

  7. Wang JX, Li YZ, Yu XK, Li GC, Ji XY (2018) Investigation of heat transfer mechanism of low environmental pressure large-space spray cooling for near-space flight systems. Int J Heat Mass Transf 119:496–507

    Article  Google Scholar 

  8. Lu L, Han X, Li J, Hua J, Ouyang M (2013) A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources 226:272–288

    Article  CAS  Google Scholar 

  9. Chen FF, Huang R, Wang CM, Yu X, Liu H, Wu Q, Qian K, Bhagat R (2020) Air and PCM cooling for battery thermal management considering battery cycle life. Appl Therm Eng 173:115154

    Article  CAS  Google Scholar 

  10. Wang JX, Li YZ, Zhang Y, Li JX, Mao YF, Ning XW (2018) A hybrid cooling system combining self-adaptive single-phase mechanically pumped fluid loop and gravity-immune two-phase spray module. Energy Convers Manag 176:194–208

    Article  Google Scholar 

  11. Yang NX, Zhang XW, Li GJ, Hua D (2015) Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements. Appl Therm Eng 80:55–65

    Article  CAS  Google Scholar 

  12. JQ E, Han D, Qiu A et al (2018) Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Appl Therm Eng 132:508–520

    Article  Google Scholar 

  13. Zou D, Ma X, Liu X, Zheng P, Hu Y (2018) Thermal performance enhancement of composite phase change materials (PCM) using graphene and carbon nanotubes as additives for the potential application in lithium-ion power battery. Int J Heat Mass Transf 120:33–41

    Article  CAS  Google Scholar 

  14. Wu WX, Wang SF, Wu W, Chen K, Hong SH, Lai YX (2019) A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag 182:262–281

    Article  Google Scholar 

  15. Hallaj SA, Selman JR (2000) A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc 147:3231–3236

    Article  CAS  Google Scholar 

  16. Jiang G, Huang J, Fu Y et al (2017) Thermal optimization of composite phase change material/ expanded graphite for Li-ion battery thermal management. Appl Therm Eng 108:1119–1125

    Article  Google Scholar 

  17. Zhang Z, Fang X (2006) Study on paraffin/expanded graphite composite phase change thermal energy storage material. Energy Convers Manag 47:303–310

    Article  CAS  Google Scholar 

  18. Cai Y, Song L, He Q, Yang D, Hu Y (2008) Preparation thermal and flammability properties of a novel form-stable phase change materials based on high density polyethylene/poly (ethylene-co-vinyl acetate)/organophilic montmorillonite nanocomposites/paraffin compounds. Energy Convers Manag 49:2055–2062

    Article  CAS  Google Scholar 

  19. Zareer MA, Dincer I, Rosen MA (2019) A novel approach for performance improvement of liquid to vapor based battery cooling systems. Energy Convers Manag 187:191–204

    Article  Google Scholar 

  20. Wu WX, Yang XQ, Zhang GQ, Chen K, Wang SF (2017) Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers Manag 138:486–492

    Article  Google Scholar 

  21. Fan YQ, Bao Y, Chen L, Chu Y, Tan XJ, Yang ST (2019) Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Appl Therm Eng 155:96–109

    Article  Google Scholar 

  22. Wang JX, Birbarah P, Docimo D, Yang TY, Alleyne A, Miljkovic N (2021) Nanostructured jumping-droplet thermal rectifier. Phys Rev E 10E3, 023110

  23. Wang T, Tseng KJ, Zhao JY, Wei ZB (2014) Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl Energy 134:229–238

    Article  Google Scholar 

  24. JQ E, Yue M, Chen JW et al (2018) Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Appl Therm Eng 144:231–241

    Article  Google Scholar 

  25. Deng Y, Feng C, JQ E, Zhu H, Chen J, Wen M, Yin H (2018) Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review. Appl Therm Eng 142:10–29

    Article  CAS  Google Scholar 

  26. Wang JX, Li YZ, Zhong ML, Zhang HS (2020) Investigation on a gas-atomized spray cooling upon flat and micro-structured surface. Int J Therm Sci 161,106751

  27. Wang C, Zhang GQ, Meng LK, Li X, Situ W, Lv Y, Rao M (2017) Liquid cooling based on thermal silica plate for battery thermal management system. Int J Energy Res 41:2468–2479

    Article  CAS  Google Scholar 

  28. Jin LW, Lee PS, Kong XX, Fan Y, Chou SK (2014) Ultra-thin minichannel LCP for EV battery thermal management. Appl Energy 113:1786–1794

    Article  CAS  Google Scholar 

  29. Huo Y, Rao Z, Liu X, Zhao J (2015) Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manag 89:387–395

    Article  Google Scholar 

  30. Zhao CR, Cao JW, Dong T, Jiang FM (2018) Thermal behavior study of discharging/charging cylindrical lithium-ion battery module cooled by channeled liquid flow. Int J Heat Mass Transf 120:751–762

    Article  CAS  Google Scholar 

  31. Joris J, Joeri VM (2020) A comprehensive review of future thermal management systems for battery electrified vehicles. J Energy Storage 31, 101551

  32. Ling ZY, Wang FX, Fang XM, Gao XN, Zhang ZG (2015) A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy 148:403–409

    Article  CAS  Google Scholar 

  33. Song LM, Zhang HY, Yang C (2019) Thermal analysis of conjugated cooling configurations using phase change material and liquid cooling techniques for a battery module. Int J Heat Mass Transf 133:827–841

    Article  Google Scholar 

  34. Wei YY, Chaab MA (2018) Experimental investigation of a novel hybrid cooling method for lithium-ion batteries. Appl Therm Eng 136:375–387

    Article  Google Scholar 

  35. Bernardi D, Pawlikowski E, Newman J (1985) A general energy balance for battery systems. J Electrochem Soc 132:5–12

    Article  CAS  Google Scholar 

  36. Choi YS, Kang DM (2014) Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles. J Power Sources 270:273–280

    Article  CAS  Google Scholar 

  37. Saw LH, Ye Y, Tay AA, Chong WT, Kuan SH, Yew MC (2016) Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling. Appl Energy 177:783–792

    Article  Google Scholar 

  38. Sahel D, Ameur H, Benzeguir R, Kamla Y (2016) Enhancement of heat transfer in a rectangular channel with perforated baffles. Appl Therm Eng 101:151–164

    Article  Google Scholar 

  39. Sahel D, Ameur H, Benzeguir R, Kamla Y (2018) Prediction of heat transfer development in a smooth tube. J Eng Phys Thermophys 91(3):682–687

    Article  CAS  Google Scholar 

  40. LMS Imagine. Lab AMESim User’s Manual

Download references

Funding

The authors acknowledge the support provided by the Natural Science Foundation of Hebei Province of China (No. E2016402066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Liu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, F., Han, B. et al. Research on temperature control performance of battery thermal management system composited with multi-channel parallel liquid cooling and air cooling. Ionics 27, 2685–2695 (2021). https://doi.org/10.1007/s11581-021-04033-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04033-w

Keywords

Navigation