Skip to main content

Advertisement

Log in

CeO2-PANI-HCl and CeO2-PANI-PTSA composites: synthesis, characterization, and utilization as supercapacitor electrode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The excellent cyclic efficiency, superior reversible charge/discharge rate, and high specific power density have made supercapacitors an important class of energy storage systems in recent time. In this study, two nano-ceria-based composites were developed to use as electrode materials in supercapacitor applications. The composites were synthesized by combining ceria with conductive polyaniline (PANI) and doped with HCl and p-toluene sulfonic acid (PTSA). The materials were characterized by FTIR spectroscopy, SEM, XRD, and XPS techniques. Electrochemical studies were performed by cyclic voltammetry, galvanometric charge-discharge, and AC impedance spectroscopy. The CeO2-PANI doped with HCl and PTSA composites displayed ideal supercapacitor behavior showing higher capacitances up to 504 F g−1 and 454 F g−1, respectively, at current density of 1 A g−1 in comparison with pristine ceria (109 F g−1). Both the composites exhibited excellent specific energy (up to 100.8 W h kg−1) as well as outstanding specific power (up to 830 W kg−1). These findings support the possibility of these composites for practical applicability as electrode materials in energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Poonam, Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825

    Google Scholar 

  2. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    CAS  PubMed  Google Scholar 

  3. Down MP, Rowley-Neale SJ, Smith GC, Banks CE (2018) Fabrication of graphene oxide supercapacitor devices. ACS Appl Energy Mater 1:707–714

    CAS  Google Scholar 

  4. Chen S, Ma L, Zhang K, Kamruzzaman M, Zhi C, Zapien JA (2019) A flexible solid-state zinc ion hybrid supercapacitors based on copolymer derived hollow carbon spheres. J Mater Chem A 7:7784–7790

    CAS  Google Scholar 

  5. Vangari M, Pryor T, Jiang L (2013) Supercapacitors: review of materials and fabrication methods. J Energy Eng 139:72–79

    Google Scholar 

  6. Kotz R, Carlen M (2000) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    CAS  Google Scholar 

  7. Vanitha M, Cao KP, Balasubramanian N (2015) Ag nanocrystals anchored CeO2/graphene nanocomposite for enhanced supercapacitor applications. J Alloys Compd 644:534–544

    CAS  Google Scholar 

  8. Wang L, Meng F (2013) Oxygen vacancy and Ce3+ ion dependent magnetism of monocrystal CeO2 nanopoles synthesized by a facile hydrothermal method. Mater Res Bull 48:3492–3498

    CAS  Google Scholar 

  9. Fan Z, Meng F, Gong J, Li H, Hu Y, Liu D (2016) Enhanced photocatalytic activity of hierarchical flower-like CeO2/TiO2 heterostructures. Mater Lett 175:36–39

    CAS  Google Scholar 

  10. Bibi N, Xia Y, Ahmed S, Zhu Y, Zhang S, Iqbal A (2018) Highly stable mesoporous CeO2/CeS2 nanocomposite as electrode material with improved supercapacitor electrochemical performance. Ceram Int 44:22262–22270

    CAS  Google Scholar 

  11. Gong J, Meng F, Fan Z, Li H, Du Z (2017) Template-free controlled hydrothermal synthesis for monodisperse flowerlike porous CeO2 microspheres and their superior catalytic reduction of NO with NH3. J Alloys Compd 690:677–687

    CAS  Google Scholar 

  12. Meng F, Gong J, Fan Z, Li H, Yuan J (2016) Hydrothermal synthesis and mechanism of triangular prism-like monocrystalline CeO2 nanotubes via a facile template-free hydrothermal route. Ceram Int 42:4700–4708

    CAS  Google Scholar 

  13. Meng F, Zhang C, Fan Z, Gong J, Li A, Ding Z, Tang H, Zhang M, Wu G (2015) Hydrothermal synthesis of hexagonal CeO2 nanosheets and their room temperature ferromagnetism. J Alloys Compd 647:1013–1021

    CAS  Google Scholar 

  14. Miah AT, Malakar B, Saikia P (2016) Gold over ceria–Titania mixed oxides: solar light induced catalytic activity for Nitrophenol reduction. Catal Lett 146:291–303

    CAS  Google Scholar 

  15. Farahmandjou M, Zarinkamar M, Firoozabad TP (2016) Synthesis of cerium oxide (CeO2) nanoparticles using simple CO-precipitation method. Rev Mex Fis 2:496–499

    Google Scholar 

  16. Andersson DA, Simak SI, Skorodumova NV, Abrikosov IA, Johansson B (2006) Optimization of ionic conductivity in doped ceria. Proc Natl Acad Sci 103:3518–3521

    CAS  PubMed  Google Scholar 

  17. Song E, Choi JW (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANI) based electrode materials for energy storage and conversion. JSAMD 1:225–255

    Google Scholar 

  19. Zhang X, Ji L, Zhang S, Yang W (2007) Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor. J Power Sources 173:1017–1023

    CAS  Google Scholar 

  20. Yan Y, Cheng Q, Wang G, Li C (2011) Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources 196:7835–7840

    CAS  Google Scholar 

  21. Deng D, Chen N, Xiao X, Du S, Wang Y (2017) Electrochemical performance of CeO2 nanoparticle decorated graphene oxide as an electrode material for supercapacitor. Ionics 23:121–129

    CAS  Google Scholar 

  22. Maheswari N, Muralidharan G (2018) Fabrication of CeO2/PANI composites for high energy density supercapacitors. Mater Res Bull 106:357–364

    Google Scholar 

  23. Gomes EC, Oliveira MAS (2012) Chemical polymerization of aniline in hydrochloric acid (HCl) and formic acid (HCOOH) media. Differences between the two synthesized polyanilines. Am J Polym Sci 2:5–13

    CAS  Google Scholar 

  24. Kulkarni MV, Viswanath AK, Aiyer RC, Khanna PK (2005) Synthesis, characterization, and morphology of p-toluene sulfonic acid-doped polyaniline: a material for humidity sensing application. J Polym Sci 43:2161–2169

    CAS  Google Scholar 

  25. Ryu KS, Kim KM, Park N-G, Park YJ, Chang SH (2002) Symmetric redox capacitor with conducting polyaniline electrodes. J Power Sources 103:305–309

    CAS  Google Scholar 

  26. Parvatikar N, Jain S, Bhoraskar SV, Ambika Prasad MVN (2006) Spectroscopic and electrical properties of polyaniline/ CeO2 composites and their application as humidity sensor. J Appl Polym Sci 102:5533–5537

    CAS  Google Scholar 

  27. Lee JSM, Briggs ME, Hu CC, Cooper AI (2018) Controlling electric double-layer capacitance and pseudocapacitance in heteroatom-doped carbons derived from hypercrosslinked microporous polymers. Nano Energy 46:277–289

    CAS  Google Scholar 

  28. Iqbal MF, Hassan M, Ashiq MN, Iqbal S, Bibi N, Parveen B (2017) High specific capacitance and energy density of synthesized graphene oxide based hierarchical Al2S3 nanorambutan for supercapacitor applications. Electrochim Acta 246:1097–1103

    CAS  Google Scholar 

  29. Binet C, Daturi M, Lavalley J-C (1999) IR study of polycrystalline ceria properties in oxidised and reduced states. Catal Today 50:207–225

    CAS  Google Scholar 

  30. Xia H, Wang Q (2003) Preparation of conductive polyaniline/nanosilica particle composites through ultrasonic irradiation. J Appl Polym Sci 87:1811–1817

    CAS  Google Scholar 

  31. Razak SIA, Ahmad AL, Zein SHS (2009) Polymerisation of protonic polyaniline/multi-walled carbon nanotubes-manganese dioxide nanocomposites. J Phys Sci 20:27–34

    CAS  Google Scholar 

  32. John A, Mahadeva SK, Kim J (2010) The preparation, characterization and actuation behavior of polyaniline and cellulose blended electro-active paper. Smart Mater Struct 19:045011–045016

    Google Scholar 

  33. Reddy BM, Saikia P, Bharali P, Yamada Y, Kobayashi T, Muhler M, Grunert W (2008) Structural characterization and catalytic activity of nanosized CexM1-xO2 (M=Zr and Hf) mixed oxides. J Phys Chem C 112:11729–11737

    CAS  Google Scholar 

  34. Chaudhari HK, Kelkar DS (1997) Investigation of structure and electrical conductivity in doped polyaniline. Polym Int 42:380–384

    CAS  Google Scholar 

  35. Guo N, Liang Y, Lan S, Liu L, Zhang J, Ji G, Gan S (2014) Microscale hierarchical three-dimensional flowerlike TiO2/PANI composite: synthesis, characterization, and its remarkable photocatalytic activity on organic dyes under UV-light and sunlight irradiation. J Phys Chem C 118:18343–18355

    CAS  Google Scholar 

  36. Yan J, Wei T, Shao B, Fan Z, Qian W, Zhang M, Wei F (2010) Preparation of a graphene nanosheet /polyaniline composite with high specific capacitance. CARBON 48:487–493

    CAS  Google Scholar 

  37. Chelliah M, Rayappan JBB, Krishnan UM (2012) Synthesis and characterization of cerium oxide nanoparticles by hydroxide mediated approach. J Appl Sci 12:1734–1737

    CAS  Google Scholar 

  38. Padmanathan N, Selladurai S (2014) Shape controlled synthesis of CeO2 nanostructures for high performance supercapacitor electrodes. RSC Adv 4:6527–6534

    CAS  Google Scholar 

  39. Wang L, Meng F, Li K, Lu F (2013) Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Appl Surf Sci 286:269–272

    CAS  Google Scholar 

  40. Li H, Meng F, Gong J, Fan Z, Qin F (2017) Structural, morphological and optical properties of shuttle-like CeO2 synthesized by a facile hydrothermal method. J Alloys Compd 722:489–498

    CAS  Google Scholar 

  41. Gong J, Meng F, Yang X, Fan Z, Li H (2016) Controlled hydrothermal synthesis of triangular CeO2 nanosheets and their formation mechanism and optical properties. J Alloys Compd 689:606–616

    CAS  Google Scholar 

  42. Meng F, Fan Z, Zhang C, Hu Y, Guan T, Li A (2017) Morphology-controlled synthesis of CeO2 microstructures and their room temperature ferromagnetism. J Mater Sci Technol 33:444–451

    Google Scholar 

  43. Meng F, Wang L, Cui J (2013) Controllable synthesis and optical properties of nano-CeO2 via a facile hydrothermal route. J Alloys Compd 556:102–108

    CAS  Google Scholar 

  44. Kuntaiah K, Sudarsanam P, Reddy BM, Vinu A (2013) Nanocrystalline Ce1-xSmxO2-δ (x = 0.4) solid solutions: structural characterization versus CO oxidation. RSC Adv 3:7953–7962

    CAS  Google Scholar 

  45. Jaffari GH, Imrana A, Bahc M, Ali A, Bhattib AS, Qurashia US, Shah SI (2017) Identification and quantification of oxygen vacancies in CeO2 nanocrystals and their role in formation of F-centres. Appl Surf Sci 396:547–553

    CAS  Google Scholar 

  46. Sarpoushi MR, Nasibi M, Golozar MA, Shishesaz MR, Borhani MR, Noroozi S (2014) Electrochemical investigation of graphene/cerium oxide nanoparticles as an electrode material for supercapacitors. Mater Sci Semicond Process 26:374–378

    CAS  Google Scholar 

  47. Prasai D, Tuberquia JC, Harl RR, Jennings GK, Bolotin KI (2012) Graphene: corrosion-inhibiting coating. ACS Nano 6:1102–1108

    CAS  PubMed  Google Scholar 

  48. Yang S, Song H, Chen X (2006) Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochem Commun 8:137–142

    CAS  Google Scholar 

  49. Yan X, Tai Z, Chen J, Xue Q (2011) Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212–216

    CAS  PubMed  Google Scholar 

  50. Wang Y, Guo CX, Liu J, Chen T, Yang H, Li CM CeO2 nanoparticles/graphene nanocomposite-based high-performance supercapacitor. Dalton Trans 40:6388–6391

  51. Guo S, Wang W, Ozkan CS, Ozkan M (2013) Assembled graphene oxide and single-walled carbon nanotube ink for stable supercapacitors. J Mater Res 28:918–926

    CAS  Google Scholar 

  52. Lianbo M, Xiaoping S, Zhenyuan J, Guoxing Z, Hu Z (2014) Ag nanoparticles decorated MnO2/reduced graphene oxide as advanced electrode materials for supercapacitors. Chem Eng J 252:95–103

    Google Scholar 

Download references

Acknowledgments

RB is thankful to MHRD, India, for providing fellowship under TEQIP-III scheme. Authors are also grateful to CSIR-NEIST, Jorhat, and Gauhati University for the sophisticated analytical facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranjal Saikia.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bortamuly, R., Konwar, G., Boruah, P.K. et al. CeO2-PANI-HCl and CeO2-PANI-PTSA composites: synthesis, characterization, and utilization as supercapacitor electrode materials. Ionics 26, 5747–5756 (2020). https://doi.org/10.1007/s11581-020-03690-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03690-7

Keywords

Navigation