Skip to main content

Advertisement

Log in

Four decades of electrochemical investigation of Prussian blue

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Prussian blue and its analogues are well known nowadays as promising substances for energy storage, capable of electrochemical insertion of Li+, Na+, Ca2+, and other ions. A huge amount of experimental data obtained recently is in evident contradiction with the postulates declared in the early investigations on Prussian blue electrochemistry. Nevertheless, some of these old postulates are widely in use up to now. On the basis of the data on the chemistry and the composition of the Prussian blue not previously involved in the discussion, this article examines the possible participation of hydrated ions in the redox process, the composition of the electrodeposited films of this compound, and some other important problems. Analytical data on Prussian blue, obtained in the nineteenth century and underestimated by twentieth century chemists, suggests that it is a non-stoichiometric compound. Equations describing electrochemical processes of this substance have been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Keggin JF, Miles FD (1936) Structures and formulæ of the Prussian blues and related compounds. Nature 137:577–578. https://doi.org/10.1038/137577a0

    Article  CAS  Google Scholar 

  2. You Y, Wu XL, Yin YX, Guo YG (2014) High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci 7:1643–1647. https://doi.org/10.1039/C3EE44004D

    Article  CAS  Google Scholar 

  3. Pasta M, Wessells CD, Liu N, Nelson J, McDowell MT, Huggins RA, Toney MF, Cui Y (2014) Full open-framework batteries for stationary energy storage. Nat Commun 5:3007. https://doi.org/10.1038/ncomms4007

    Article  CAS  PubMed  Google Scholar 

  4. Wang B, Han Y, Wang X, Bahlawane N, Pan H, Yan M, Yan M, Jiang Y (2018) Prussian blue analogs for rechargeable batteries. iScience 3:110–133. https://doi.org/10.1016/j.isci.2018.04.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Xu Y, Zheng S, Tang H, Guo X, Xue H, Pang H (2017) Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater 9:11–30. https://doi.org/10.1016/j.ensm.2017.06.002

    Article  Google Scholar 

  6. Rudola A, Du K, Balaya P (2017) Monoclinic sodium iron hexacyanoferrate cathode and non-flammable glyme-based electrolyte for inexpensive sodium-ion batteries. J Electrochem Soc 164:A1098–A1109. https://doi.org/10.1149/2.0701706jes

    Article  CAS  Google Scholar 

  7. Wang L, Song J, Qiao R, Wray LA, Hossain MA, Chuang Y-D, Yang W, Lu Y, Evans D, Lee J-J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough JB (2015) Rhombohedral Prussian white as cathode for rechargeable sodium-ion batteries. J Am Chem Soc 137:2548–2554. https://doi.org/10.1021/ja510347s

    Article  CAS  PubMed  Google Scholar 

  8. Zhou L, Yang Z, Li C, Chen B, Wang Y, Fu L, Zhu Y, Liu X, Wu Y (2016) Prussian blue as positive electrode material for aqueous sodium-ion capacitor with excellent performance. RSC Adv 6:109340–109345. https://doi.org/10.1039/C6RA21500A

    Article  CAS  Google Scholar 

  9. Kim H, Kim H, Ding Z, Lee MH, Lim K, Yoon G, Kang K (2016) Recent progress in electrode materials for sodium-ion batteries. Adv Energy Mater 6:1600943. https://doi.org/10.1002/aenm.201600943

    Article  CAS  Google Scholar 

  10. Paolella A, Faure C, Timoshevskii V, Marras S, Bertoni G, Guerfi A, Vijh A, Armand M, Zaghib K (2017) A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J Mater Chem A 5:18919–18932. https://doi.org/10.1039/C7TA05121B

    Article  CAS  Google Scholar 

  11. Mullaliu A, Giorgetti M (2019) Metal hexacyanoferrates: ion insertion (or exchange) capabilities. In: Inamuddin AM, Asiri A (eds) Applications of ion exchange materials in the environment. Springer, Cham, pp 109–133. https://doi.org/10.1007/978-3-030-10430-6_6

    Chapter  Google Scholar 

  12. Neff VD (1978) Electrochemical oxidation and reduction of thin films of Prussian blue. J Electrochem Soc 125:886–887. https://doi.org/10.1149/1.2131575

    Article  CAS  Google Scholar 

  13. Itaya K, Uchida I, Neff VD (1986) Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues. Acc Chem Res 19:162–168. https://doi.org/10.1021/ar00126a001

    Article  CAS  Google Scholar 

  14. Mortimer RJ, Rosseinsky DR (1984) Iron hexacyanoferrate films: spectroelectrochemical distinction and electrodeposition sequence of ‘soluble’ (K+-containing) and ‘insoluble’ (K+-free) Prussian blue, and composition changes in polyelectrochromic switching. J Chem Soc Dalton Trans:2059–2062. https://doi.org/10.1039/DT9840002059

  15. Porrett R (1814) XXVI. On the nature of the salts termed triple prussiates, and on acids formed by the union of certain bodies with the elements of the prussic acid. Phil Trans R Soc Lond 104:527–556. https://doi.org/10.1098/rstl.1814.0027

    Article  Google Scholar 

  16. Yang R, Qian Z, Deng J (1998) Electrochemical deposition of Prussian blue from a single ferricyanide solution. J Electrochem Soc 145:2231–2236. https://doi.org/10.1149/1.1838625

    Article  CAS  Google Scholar 

  17. Liebig J, Geiger PL (1843) Handbuch der Chemie : Mit Rücksicht auf Pharmacie; Als neue Bearbeitung des ersten Bandes von Geiger's Handbuch der Pharmacie, Heidelberg 2, S. 642 The book is available at https://reader.digitale-sammlungen.de/de/fs1/object/display/bsb10702759_00050.html (accessed 16 June 2019)

  18. Rigamonti R (1937) Struttura dei cupriferricianuri. – Nota I. Ferrocianuro dì rame e ferrocianuri di rame e potassio. Gazz chim It 67:137–146

    CAS  Google Scholar 

  19. Rigamonti R (1938) Struttura e costituzione chimica di alcuni ferrocianuri. Gazz chim It 68:803–809

    CAS  Google Scholar 

  20. Tananaev IV, Seifer GB, Kharitonov YY, Kuznetsov VG, Korol’kov AP (1971) Khimiya ferrocyanidov (Chemistry of ferrocyanides, in Russian). Nauka, Moscow

    Google Scholar 

  21. Emeléus HJ, Anderson JS (1939) Modern aspects of inorganic chemistry. D. Van Nostrand Company, New York, p 137

    Google Scholar 

  22. Jassal V, Shanker U, Shankar S (2015) Synthesis, characterization and applications of nano-structured metal hexacyanoferrates: a review. J Environ Anal Chem 2:1000128. https://doi.org/10.4172/2380-2391.1000128

    Article  Google Scholar 

  23. Huggins RA (2016) Energy storage for medium- to large-scale applications. In: Energy storage. Springer, Cham, pp 427–471. https://doi.org/10.1007/978-3-319-21239-5_22

    Chapter  Google Scholar 

  24. Kuwabara K, Nunome J, Sugiyama K (1991) Rechargeability of solid-state copper cells utilizing cathodes of Prussian blue and Berlin green. Solid State lonics 48:303–308. https://doi.org/10.1016/0167-2738(91)90047-F

    Article  CAS  Google Scholar 

  25. Buser HJ, Schwarzenbach D, Petter W, Ludi A (1977) The crystal structure of Prussian blue: Fe4[Fe(CN)6]3xH2O. Inorg Chem 16:2704–2710. https://doi.org/10.1021/ic50177a008

    Article  CAS  Google Scholar 

  26. Kulesza PJ, Malik MA, Berrettoni M, Giorgetti M, Zamponi S, Schmidt R, Marassi R (1998) Electrochemical charging, countercation accommodation, and spectrochemical identity of microcrystalline solid cobalt hexacyanoferrate. J Phys Chem B 102:1870–1876. https://doi.org/10.1021/jp9726495

    Article  CAS  Google Scholar 

  27. Herren F, Fischer P, Ludi A, Haelg W (1980) Neutron diffraction study of Prussian blue, Fe4[Fe(CN)6]3∙xH2O. Location of water molecules and long-range magnetic order. Inorg Chem 19:956–959. https://doi.org/10.1021/ic50206a032

    Article  CAS  Google Scholar 

  28. Vol’khin VV, Shul’ga EA, Zil’berman MV (1971) Ion-exchange properties of mixed ferrocyanides of some transition metals (in Russian). Izv Akad Nauk SSSR Neorg Mater 7:77–81

    Google Scholar 

  29. Lundgren CA, Murray RW (1988) Observations on the composition of Prussian blue films and their electrochemistry. Inorg Chem 27:933–939. https://doi.org/10.1021/ic00278a036

    Article  CAS  Google Scholar 

  30. Kulesza PJ, Zamponi S, Berrettoni M, Marassi R, Malik MA (1995) Preparation, spectroscopic characterization and electrochemical charging of the sodium-containing analogue of Prussian blue. Electrochim Acta 40:681–688. https://doi.org/10.1016/0013-4686(94)00348-5

    Article  CAS  Google Scholar 

  31. Kulesza PJ, Zamponi S, Malik MA, Miecznikowski K, Berrettoni M, Marassi R (1997) Spectroelectrochemical identity of Prussian blue films in various electrolytes: comparison of time-derivative voltabsorptometric responses with conventional cyclic voltammetry. J Solid State Electrochem 1:88–93. https://doi.org/10.1007/s100080050027

    Article  CAS  Google Scholar 

  32. García-Jareño JJ, Sanmatías A, Vicente F, Gabrielli C, Keddam M, Perrot H (2000) Study of Prussian blue (PB) films by ac-electrogravimetry: influence of PB morphology on ions movement. Electrochim Acta 45:3765–3776. https://doi.org/10.1016/S0013-4686(00)00470-9

    Article  Google Scholar 

  33. Feldman BJ, Melroy OR (1987) Ion flux during electrochemical charging of Prussian blue films. J Electroanal Chem 234:213–227. https://doi.org/10.1016/0022-0728(87)80173-0

    Article  CAS  Google Scholar 

  34. Dostal A, Meyer B, Scholz F, Schröder U, Bond AM, Marken F, Shaw SJ (1995) Electrochemical study of microcrystalline solid Prussian blue particles mechanically attached to graphite and gold electrodes: electrochemically induced lattice reconstruction. J Phys Chem 99:2096–2103. https://doi.org/10.1021/j100007a045

    Article  CAS  Google Scholar 

  35. Zadronecki M, Wrona PK, Galus Z (1999) Study of growth and the electrochemical behavior of Prussian blue films using electrochemical quartz crystal microbalance. J Electrochem Soc 146:620–627. https://doi.org/10.1149/1.1391653

    Article  CAS  Google Scholar 

  36. Oh I, Lee H, Yang H, Kwak J (2001) Ion and water transports in Prussian blue films investigated with electrochemical quartz crystal microbalance. Electrochem Commun 3:274–280. https://doi.org/10.1016/S1388-2481(01)00144-8

    Article  CAS  Google Scholar 

  37. Ogura K, Nakayama M, Nakaoka K (1999) Electrochemical quartz crystal microbalance and in situ infrared spectroscopic studies on the redox reaction of Prussian blue. J Electroanal Chem 474:101–106. https://doi.org/10.1016/S0022-0728(99)00306-X

    Article  CAS  Google Scholar 

  38. Housecroft CE, Sharpe AG (2012) Inorganic chemistry, 4th. Pearson Education Limited

  39. Marcus Y (2012) Are ionic stokes radii of any use? J Solut Chem 41:2082–2090. https://doi.org/10.1007/s10953-012-9922-4

    Article  CAS  Google Scholar 

  40. Nightingale ER (1959) Phenomenological theory of ion solvation. Effective radii of hydrated ions. J Phys Chem 63:1381–1387. https://doi.org/10.1021/j150579a011

    Article  CAS  Google Scholar 

  41. Lee C, Jeong S-K (2018) Modulating the hydration number of calcium ions by varying the electrolyte concentration: electrochemical performance in a Prussian blue electrode/aqueous electrolyte system for calcium-ion batteries. Electrochim Acta 265:430–436. https://doi.org/10.1016/j.electacta.2018.01.172

    Article  CAS  Google Scholar 

  42. Kunz W, Lo Nostro P, Ninham BW (2004) The present state of affairs with Hofmeister effects. Curr Opin Colloid Interface Sci 9:1–18. https://doi.org/10.1016/j.cocis.2004.05.004

    Article  CAS  Google Scholar 

  43. Jenny H (1932) Studies on the mechanism of ionic exchange in colloidal aluminum silicates. J Phys Chem 36:2217–2258. https://doi.org/10.1021/j150338a011

    Article  CAS  Google Scholar 

  44. Gregor HP, Gutoff F, Bregman JI (1951) Studies on ion-exchange resins. II. Volumes of various cation-exchange resin particles. J Colloid Sci 6:245–270. https://doi.org/10.1016/0095-8522(51)90043-8

    Article  CAS  Google Scholar 

  45. Pauley JL (1954) Prediction of cation-exchange equilibria. J Am Chem Soc 76:1422–1425. https://doi.org/10.1021/ja01634a085

    Article  CAS  Google Scholar 

  46. Itaya K, Ataka T, Toshima S (1982) Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. J Am Chem Soc 104:4767–4772. https://doi.org/10.1021/ja00382a006

    Article  CAS  Google Scholar 

  47. Bocarsly AB, Sinha S (1982) Chemically-derivatized nickel surfaces: synthesis of a new class of stable electrode interfaces. J Electroanal Chem 137:157–162. https://doi.org/10.1016/0022-0728(82)85075-4

    Article  CAS  Google Scholar 

  48. Bocarsly AB, Sinha S (1982) Effects of surface structure on electrode charge transfer properties: induction of ion selectivity at the chemically derivatized interface. J Electroanal Chem 140:167–172. https://doi.org/10.1016/0368-1874(82)85310-0

    Article  CAS  Google Scholar 

  49. Sinha S, Humphrey BD, Bocarsly AB (1984) Reaction of nickel electrode surfaces with anionic metal-cyanide complexes: formation of precipitated surfaces. Inorg Chem 23:203–212. https://doi.org/10.1021/ic00170a018

    Article  CAS  Google Scholar 

  50. Kelly MT, Arbuckle-Keil GA, Johnson LA, Su EY, Amos LJ, Chun JKM, Bocarsly AB (2001) Nickel ferrocyanide modified electrodes as active cation-exchange matrices: real time XRD evaluation of overlayer structure and electrochemical behavior. J Electroanal Chem 500:311–321. https://doi.org/10.1016/S0022-0728(00)00487-3

    Article  CAS  Google Scholar 

  51. Schneemeyer LF, Spengler SE, Murphy DW (1985) Ion selectivity in nickel hexacyanoferrate films on electrode surfaces. Inorg Chem 24:3044–3046. https://doi.org/10.1021/ic00213a034

    Article  CAS  Google Scholar 

  52. Bácskai J, Martinusz K, Czirók E, Inzelt G, Kulesza PJ, Malik MA (1995) Polynuclear nickel hexacyanoferrates: monitoring of film growth and hydrated counter-cation flux/storage during redox reactions. J Electroanal Chem 385:241–248. https://doi.org/10.1016/0022-0728(94)03788-5

    Article  Google Scholar 

  53. Malik MA, Miecznikowski K, Kulesza PJ (2000) Quartz crystal microbalance monitoring of mass transport during redox processes of cyanometallate modified electrodes: complex charge transport in nickel hexacyanoferrate films. Electrochim Acta 45:3777–3784. https://doi.org/10.1016/S0013-4686(00)00469-2

    Article  CAS  Google Scholar 

  54. Chen S-M (2002) Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate. J Electroanal Chem 521:29–52. https://doi.org/10.1016/S0022-0728(02)00677-0

    Article  CAS  Google Scholar 

  55. Sun X, Duffort V, Nazar LF (2016) Prussian blue Mg-Li hybrid batteries. Adv Sci 3:1600044. https://doi.org/10.1002/advs.201600044

    Article  CAS  Google Scholar 

  56. Ciabocco M, Berrettoni M, Zamponi S, Cox JA, Marini S (2013) Electrochemical behavior of Inhcf in alkali metal electrolytes. J Solid State Electrochem 17:2445–2452. https://doi.org/10.1007/s10008-013-2123-2

    Article  CAS  Google Scholar 

  57. Shiga T, Kondo H, Kato Y, Inoue M (2015) Insertion of calcium ion into Prussian blue analogue in nonaqueous solutions and its application to a rechargeable battery with dual carriers. J Phys Chem C 119:27946–27953. https://doi.org/10.1021/acs.jpcc.5b10245

    Article  CAS  Google Scholar 

  58. Tojo T, Sugiura Y, Inada R, Sakurai Y (2016) Reversible calcium ion batteries using a dehydrated Prussian blue analogue cathode. Electrochim Acta 207:22–27. https://doi.org/10.1016/j.electacta.2016.04.159

    Article  CAS  Google Scholar 

  59. Lipson AL, Han S-D, Kim S, Pan B, Sa N, Liao C, Fister TT, Burrell AK, Vaughey JT, Ingram BJ (2016) Nickel hexacyanoferrate, a versatile intercalation host for divalent ions from nonaqueous electrolytes. J Power Sources 325:646–652. https://doi.org/10.1016/j.jpowsour.2016.06.019

    Article  CAS  Google Scholar 

  60. Kuperman N, Padigi P, Goncher G, Evans D, Thiebes J, Solanki R (2017) High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery. J Power Sources 342:414–418. https://doi.org/10.1016/j.jpowsour.2016.12.074

    Article  CAS  Google Scholar 

  61. Gheytani S, Liang Y, Wu F, Jing Y, Dong H, Rao KK, Chi X, Fang F, Yao Y (2017) An aqueous Ca-ion battery. Adv Sci 4:1700465. https://doi.org/10.1002/advs.201700465

    Article  CAS  Google Scholar 

  62. Liu S, Pan GL, Li GR, Gao XP (2015) Copper hexacyanoferrate nanoparticles as cathode material for aqueous Al-ion batteries. J Mater Chem A 3:959–962. https://doi.org/10.1039/C4TA04644G

    Article  CAS  Google Scholar 

  63. Reed LD, Ortiz SN, Xiong M, Menke EJ (2015) A rechargeable aluminum-ion battery utilizing a copper hexacyanoferrate cathode in an organic electrolyte. Chem Commun 51:14397–14400. https://doi.org/10.1039/c5cc06053b

    Article  CAS  Google Scholar 

  64. Wang RY, Shyam B, Stone KH, Weker JN, Pasta M, Lee H-W, Toney MF, Cui Y (2015) Reversible multivalent (monovalent, divalent, trivalent) ion insertion in open framework materials. Adv Energy Mater 5:1401869. https://doi.org/10.1002/aenm.201401869

    Article  CAS  Google Scholar 

  65. Padigi P, Goncher G, Evans D, Solanki R (2015) Potassium barium hexacyanoferrate – a potential cathode material for rechargeable calcium ion batteries. J Power Sources 273:460–464. https://doi.org/10.1016/j.jpowsour.2014.09.101

    Article  CAS  Google Scholar 

  66. Holland A, Mckerracher RD, Cruden A, Wills RGA (2018) An aluminium battery operating with an aqueous electrolyte. J Appl Electrochem 48:243–250. https://doi.org/10.1007/s10800-018-1154-x

    Article  CAS  Google Scholar 

  67. Marzak P, Kosiahn M, Yun J, Bandarenka AS (2019) Intercalation of Mg2+ into electrodeposited Prussian blue analogue thin films from aqueous electrolytes. Electrochim Acta 307:157–163. https://doi.org/10.1016/j.electacta.2019.03.094

    Article  CAS  Google Scholar 

  68. Chen L, Bao JL, Dong X, Truhlar DG, Wang Y, Wang C, Xia Y (2017) Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode. ACS Energy Lett 2:1115–1121. https://doi.org/10.1021/acsenergylett.7b00040

    Article  CAS  Google Scholar 

  69. Horanyi G, Inzelt G, Kulesza PJ (1990) Radiotracer study of metal hexacyanometalate films. Sorption of Ca2+ ions into cupric hexacyanoferrate films. Electrochim Acta 35:811–816. https://doi.org/10.1016/0013-4686(90)90073-9

    Article  CAS  Google Scholar 

  70. Jayalakshmi M, Gomathi H (2002) Solvation vs hydration of intercalated potassium and sodium ions in Prussian blue films. Bull Electrochem 18:75–80 http://cecri.csircentral.net/id/eprint/1261

    CAS  Google Scholar 

  71. Eftekhari A (2004) Potassium secondary cell based on Prussian blue cathode. J Power Sources 126:221–228. https://doi.org/10.1016/j.jpowsour.2003.08.007

    Article  CAS  Google Scholar 

  72. Crumbliss AL, Lugg PS, Morosoff N (1984) Alkali metal cation effects in a Prussian blue surface modified electrode. Inorg Chem 23:4701–4708. https://doi.org/10.1021/ic00194a057

    Article  CAS  Google Scholar 

  73. Mizuno Y, Okubo M, Hosono E, Kudo T, Zhou H, Oh-ishi K (2013) Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J Phys Chem C 117:10877–10882. https://doi.org/10.1021/jp311616s

    Article  CAS  Google Scholar 

  74. Scholz F, Dostal A (1996) The formal potentials of solid metal hexacyanometalates. Angew Chem Int Ed 34:2685–2687. https://doi.org/10.1002/anie.199526851

    Article  Google Scholar 

  75. Wagner C, Blank M, Oetken M (2019) Das “Ionenradienparadoxon” – Experimentelle Ermittlung der (hydratisierten) Ionenradien von verschiedenen Kationen durch die Einlagerung in Berliner Blau. CHEMCON 25:57–62. https://doi.org/10.1002/ckon.201800009

    Article  CAS  Google Scholar 

  76. Kaplun MM, Smirnov YE, Mikli V, Malev VV (2001) Structure of cobalt hexacyanoferrate films synthesized from a complex electrolyte. Russ J Electrochem 37:914–924. https://doi.org/10.1023/A:1011992109433

    Article  CAS  Google Scholar 

  77. Kulesza PJ, Malik MA, Zamponi S, Berrettoni M, Marassi R (1995) Electrolyte-cation-dependent coloring, electrochromism and thermochromism of cobalt(II) hexacyanoferrate(III, II) films. J Electroanal Chem 397:287–292. https://doi.org/10.1016/0022-0728(95)04187-8

    Article  Google Scholar 

  78. Ivanov VD, Alieva AR (2000) Electrochemical behavior of electrode modified with a cobalt hexacyanoferrate film: effect of the supporting electrolyte cation. Russ J Electrochem 36:852–860. https://doi.org/10.1007/BF02757058

    Article  CAS  Google Scholar 

  79. Teppen BJ, Miller DM (2006) Hydration energy determines isovalent cation exchange selectivity by clay minerals. Soil Sci Soc Am J 70:31–40. https://doi.org/10.2136/sssaj2004.0212

    Article  CAS  Google Scholar 

  80. Rotenberg B, Morel J-P, Marry V, Turq P, Morel-Desrosiers N (2009) On the driving force of cation exchange in clays: insights from combined microcalorimetry experiments and molecular simulation. Geochim Cosmochim Acta 73:4034–4044. https://doi.org/10.1016/j.gca.2009.04.012

    Article  CAS  Google Scholar 

  81. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5. – Gibbs free energy of hydration at 298.15 K. J Chem Soc Faraday Trans 87:2995–2999. https://doi.org/10.1039/FT9918702995

    Article  CAS  Google Scholar 

  82. Yun J, Pfisterer J, Bandarenka AS (2016) How simple are the models of Na intercalation in aqueous media? Energy Environ Sci 9:955–961. https://doi.org/10.1039/c5ee03197d

    Article  CAS  Google Scholar 

  83. Davidson D (1937) The formulation of Prussian blue. J Chem Educ 14:277–281. https://doi.org/10.1021/ed014p277

    Article  CAS  Google Scholar 

  84. Chadwick BM, Sharpe AG (1966) Transition metal cyanides and their complexes. Adv Inorg Chem Radiochem 8:83–176. https://doi.org/10.1016/S0065-2792(08)60201-0

    Article  CAS  Google Scholar 

  85. Wilde RE, Ghosh SN, Marshall BJ (1970) Prussian blues. Inorg Chem 9:2512–2516. https://doi.org/10.1021/ic50093a027

    Article  CAS  Google Scholar 

  86. Kraft A (2008) On the discovery and history of Prussian blue. Bull Hist Chem 33:61–67

    CAS  Google Scholar 

  87. Woodward J (1724-1725) IV. Præparatio cærulei prussiaci ex germaniâ missa ad Johannem Woodward, M. D. Prof. Med. Gresh. R. S. S. Phil Trans 33:15–17. https://doi.org/10.1098/rstl.1724.0005

    Article  Google Scholar 

  88. Parry EJ, Coste JH (1896) Commercial Prussian blue. Analyst 21:225–230. https://doi.org/10.1039/AN8962100225

    Article  CAS  Google Scholar 

  89. Leeds FH (1897) Notes on Prussian blue. Analyst 22:9–10. https://doi.org/10.1039/AN8972200009

    Article  Google Scholar 

  90. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Sanyova J, Strivay D (2013) Synthesis and fading of eighteenth-century Prussian blue pigments: a combined study by spectroscopic and diffractive techniques using laboratory and synchrotron radiation sources. J Synchrotron Rad 20:460–473. https://doi.org/10.1107/S0909049513004585

    Article  CAS  Google Scholar 

  91. Samain L, Grandjean F, Long GJ, Martinetto P, Bordet P, Strivay D (2013) Relationship between the synthesis of Prussian blue pigments, their color, physical properties, and their behavior in paint layers. J Phys Chem C 117:9693–9712. https://doi.org/10.1021/jp3111327

    Article  CAS  Google Scholar 

  92. Williamson AW (1845) CLXV. On the blue compounds of cyanogen and iron. Mem Proc Chem Soc 3:125–140. https://doi.org/10.1039/MP8450300125

    Article  CAS  Google Scholar 

  93. Williamson AW (1846) Untersuchung einiger Cyanverbindungen des Eisens. Liebigs Ann Chem 57:225–246. https://doi.org/10.1002/jlac.18460570209

    Article  Google Scholar 

  94. Williamson AW (1846) XXVIII. On the blue compounds of cyanogen and iron. Philos Mag 3(29):156–171. https://doi.org/10.1080/14786444608645606

    Article  Google Scholar 

  95. Gay-Lussac JL (1831) Thatsachen zur Geschichte des Berlinerblau’s. Ann Phys (Berlin) 97:490–495. Historical citation is: Poggendorf’s Annalen, 21:490–495. https://doi.org/10.1002/andp.18310970306

    Article  Google Scholar 

  96. Williams HE (1915) The chemistry of cyanogen compounds and their manufacture and estimation. J. & A. Churchill, London

    Google Scholar 

  97. Everitt T (1835) XV. On the reaction which takes place when ferrocyanuret of potassium is distilled with dilute sulphuric acid; with some facts relative to hydrocyanic acid and its preparation of uniform strength. Philos Mag 3 6:97–103. https://doi.org/10.1080/14786443508648542

    Article  Google Scholar 

  98. Hu M, Jiang JS (2011) Facile synthesis of air-stable Prussian white microcubes via a hydrothermal method. Mat Res Bull 46:702–707. https://doi.org/10.1016/j.materresbull.2011.01.017

    Article  CAS  Google Scholar 

  99. Skraup ZH (1877) Zur Kenntnis der Eisencyanverbindungen. Liebigs Ann Chem 186:371–388. https://doi.org/10.1002/jlac.18771860212

    Article  Google Scholar 

  100. Reynolds EJ (1887) LXIII. – the composition of Prussian blue and Turnbull's blue. J Chem Soc Trans 51:644–646. https://doi.org/10.1039/CT8875100644

    Article  CAS  Google Scholar 

  101. Bonnette AK, Allen JF (1971) Isotopic labeling of Mössbauer studies. Application to the iron cyanides. Inorg Chem 10:1613–1616. https://doi.org/10.1021/ic50102a014

    Article  Google Scholar 

  102. Holtzman H (1945) Alkali resistance of the iron blues. Ind Eng Chem 37:855–861. https://doi.org/10.1021/ie50429a019

    Article  CAS  Google Scholar 

  103. Weiser HB, Milligan WO, Bates JB (1942) X-ray diffraction studies on heavy-metal iron-cyanides. J Phys Chem 46:99–111. https://doi.org/10.1021/j150415a013

    Article  CAS  Google Scholar 

  104. Armand MB, Whittingham MS, Huggins RA (1972) The iron cyanide bronzes. Mater Res Bull 7:101–107. https://doi.org/10.1016/0025-5408(72)90266-8

    Article  CAS  Google Scholar 

  105. Pelouze T-J (1841) Note sur une nouvelle combinaison de cyanogène et de fer. Ann Chim Phys 69:40–43

    Google Scholar 

  106. Wu X, Shao M, Wu C, Qian J, Cao Y, Ai X, Yang H (2016) Low defect FeFe(CN)6 framework as stable host material for high performance Li-ion batteries. ACS Appl Mater Interfaces 8:23706–23712. https://doi.org/10.1021/acsami.6b06880

    Article  CAS  PubMed  Google Scholar 

  107. Yang D, Xu J, Liao X-Z, Wang H, He Y-S, Ma Z-F (2015) Prussian blue without coordinated water as a superior cathode for sodium-ion batteries. Chem Commun 51:8181–8184. https://doi.org/10.1039/C5CC01180A

    Article  CAS  Google Scholar 

  108. Li W-J, Chou S-L, Wang J-Z, Kang Y-M, Wang J-L, Liu Y, Gu Q-F, Liu H-K, Dou S-X (2015) Facile method to synthesize Na-enriched Na1+xFeFe(CN)6 frameworks as cathode with superior electrochemical performance for sodium-ion batteries. Chem Mater 27:1997–2003. https://doi.org/10.1021/cm504091z

    Article  CAS  Google Scholar 

  109. Wu X, Sun M, Guo S, Qian J, Liu Y, Cao Y, Ai X, Yang H (2015) Vacancy-free Prussian blue nanocrystals with high capacity and superior cyclability for aqueous sodium-ion batteries. Chemnanomat 1:188–193. https://doi.org/10.1002/cnma.201500021

    Article  CAS  Google Scholar 

  110. Wu X, Wu C, Wei C, Hu L, Qian J, Cao Y, Ai X, Wang J, Yang H (2016) Highly crystallized Na2CoFe(CN)6 with suppressed lattice defects as superior cathode material for sodium-ion batteries. ACS Appl Mater Interfaces 8:5393–5399. https://doi.org/10.1021/acsami.5b12620

    Article  CAS  PubMed  Google Scholar 

  111. Shi W, Nie P, Shang X, Yang J, Xie Z, Xu R, Liu J (2019) Berlin green-based battery deionization-highly selective potassium recovery in seawater. Electrochim Acta 310:104–112. https://doi.org/10.1016/j.electacta.2019.04.122

    Article  CAS  Google Scholar 

  112. Shadike Z, Shi D-R, Wang T, Cao M-H, Yang S-F, Chen J, Fu Z-W (2017) Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery. J Mater Chem A 5:6393–6398. https://doi.org/10.1039/c7ta00484b

    Article  CAS  Google Scholar 

  113. De Wet JF, Rolle R (1965) On the existence and autoreduction of iron(III)-hexacyanoferrate(III), Z. Anorg Allgem Chem 336:96–103. https://doi.org/10.1002/zaac.19653360114

    Article  Google Scholar 

  114. Yang J, Wang H, Lu L, Shi W, Zhang H (2006) Large-scale synthesis of Berlin green Fe[Fe(CN)6] microcubic crystals. Cryst Growth Des 6:2438–2440. https://doi.org/10.1021/cg060469r

    Article  CAS  Google Scholar 

  115. Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R (2015) Prussian green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta 166:32–39. https://doi.org/10.1016/j.electacta.2015.03.084

    Article  CAS  Google Scholar 

  116. Dong H, Li Y, Liang Y, Li G, Sun C-J, Ren Y, Lu Y, Yao Y (2016) A magnesium–sodium hybrid battery with high operating voltage. Chem Commun 52:8263–8266. https://doi.org/10.1039/C6CC03081E

    Article  CAS  Google Scholar 

  117. Reihlen H, v. Kummer U (1929) Über Komplexe Metallcyanide. II, Liebigs Ann Chem 469:30–44. https://doi.org/10.1002/jlac.19294690105

    Article  CAS  Google Scholar 

  118. Messner J (1895) Zur Kenntnis der Ferrocyanide. Z Anorg Allgem Chem 9:126–143. https://doi.org/10.1002/zaac.18950090112

    Article  CAS  Google Scholar 

  119. Williams HE (1913) Some green iron cyanogen compounds. Proc Chem Soc London 29:54–55. https://doi.org/10.1039/PL9132900049

    Article  Google Scholar 

  120. Ochmańska J, Kupis D, Galus Z (1994) Redox behaviour and charge transport in solid Berlin green. Microscopic and macroscopic charge diffusion. J Electroanal Chem 371:197–204. https://doi.org/10.1016/0022-0728(93)03230-M

    Article  Google Scholar 

  121. Pajerowski DM, Watanabe T, Yamamoto T, Einaga Y (2011) Electronic conductivity in Berlin green and Prussian blue. Phys Rev B 83:153202. https://doi.org/10.1103/PhysRevB.83.153202

    Article  CAS  Google Scholar 

  122. Alich MA, Haworth DT, Johnson MF (1967) Spectrophotometric studies of hexacyanoferrate(III) ion and its reaction with iron(III) in water and ethanol. J Inorg Nucl Chem 29:1637–1642. https://doi.org/10.1016/0022-1902(67)80207-0

    Article  Google Scholar 

  123. Walker RG, Watkins KO (1968) A study of the kinetics of complex formation between hexacyanoferrate(III) ions and iron(III) to form FeFe(CN)6 (Prussian brown). Inorg Chem 7:885–888. https://doi.org/10.1021/ic50063a009

    Article  CAS  Google Scholar 

  124. Emrich RJ, Traynor L, Gambogi W, Buhks E (1987) Surface analysis of electrochromic displays of iron hexacyanoferrate films by x-ray photoelectron spectroscopy. J Vac Sci Technol A 5:1307–1310. https://doi.org/10.1116/1.574797

    Article  CAS  Google Scholar 

  125. Rosseinsky DR, Glidle A (2003) A EDX, spectroscopy, and composition studies of electrochromic iron(III) hexacyanoferrate(II) deposition. J Electrochem Soc 150:C641–C645. https://doi.org/10.1149/1.1599848

    Article  CAS  Google Scholar 

  126. Isfahani VB, Memarian N, Dizaji HR, Arab A, Silva MM (2019) The physical and electrochromic properties of Prussian blue thin films electrodeposited on ITO electrodes. Electrochim Acta 304:282–291. https://doi.org/10.1016/j.electacta.2019.02.120

    Article  CAS  Google Scholar 

  127. Chidsey CE, Feldman BJ, Lundgren C, Murray RW (1986) Micrometer-spaced platinum interdigitated array electrode: fabrication, theory, and initial use. Anal Chem 58:601–607. https://doi.org/10.1021/ac00294a026

    Article  CAS  Google Scholar 

  128. McCargar JW, Neff VD (1988) Thermodynamics of mixed-valence intercalation reactions: the electrochemical reduction of Prussian blue. J Phys Chem 92:3598–3604. https://doi.org/10.1021/j100323a055

    Article  CAS  Google Scholar 

  129. García-Jareño JJ, Navarro-Laboulais J, Vicente F (1997) A numerical approach to the voltammograms of the reduction of Prussian blue films on ITO electrodes. Electrochim Acta 42:1473–1480. https://doi.org/10.1016/S0013-4686(96)00302-7

    Article  Google Scholar 

  130. Agrisuelas J, Bueno PR, Ferreira FF, Gabrielli C, García-Jareño JJ, Gimenez-Romero D, Perrot H, Vicente F (2009) Electronic perspective on the electrochemistry of Prussian blue films. J Electrochem Soc 156:P74–P80. https://doi.org/10.1149/1.3080711

    Article  CAS  Google Scholar 

  131. Feldman BJ, Murray RW (1987) Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes. Inorg Chem 26:1702–1708. https://doi.org/10.1021/ic00258a014

    Article  CAS  Google Scholar 

  132. Reguera E, Fernández-Bertrán J, Dago A, Díaz C (1992) Mössbauer spectroscopic study of Prussian blue from different provenances. Hyperfine Interact 73:295–308. https://doi.org/10.1007/BF02418604

    Article  CAS  Google Scholar 

  133. Greaves TL, Cashion JD (2016) Site analysis and calculation of the quadrupole splitting of Prussian blue Mössbauer spectra. Hyperfine Interact 237:70–79. https://doi.org/10.1007/s10751-016-1216-6

    Article  CAS  Google Scholar 

  134. Matsuda T, Kim J, Moritomo Y (2011) Network dimensionalities and thermal expansion properties of metal nitroprussides. RSC Adv 1:1716–1720. https://doi.org/10.1039/C1RA00547B

    Article  CAS  Google Scholar 

  135. Mullica DF, Tippin DB, Sappenfield EL (1991) Synthesis, spectroscopic studies and X-ray crystal structure analysis of cobalt nitroprusside, Co[Fe(CN)5NO]·5H2O. J Coord Chem 24:83–91. https://doi.org/10.1080/00958979109409738

    Article  CAS  Google Scholar 

  136. Gómez A, Rodríguez-Hernández J, Reguera E (2007) Crystal structures of cubic nitroprussides: M[Fe(CN)5NO]·xH2O (M = Fe, Co, Ni). Obtaining structural information from the background. Powder Diffraction 22:27–34. https://doi.org/10.1154/1.2700265

    Article  CAS  Google Scholar 

  137. de Sá AC, Maraldi VA, Bonfim KS, Souza TR, Paim LL, Barbosa PFP, Nakamura AP, do Carmo DR (2017) Electrocatalitic detection of hydrazine using chemically modified electrodes with cobalt pentacyanonitrosylferrate adsorbed on the 3–aminopropylsilica surface. Int J Chem 9:12–21. https://doi.org/10.5539/ijc.v9n4p12

    Article  CAS  Google Scholar 

  138. Paim LL, Stradiotto NR (2010) Electrooxidation of sulfide by cobalt pentacyanonitrosylferrate film on glassy carbon electrode by cyclic voltammetry. Electrochim Acta 55:4144–4147. https://doi.org/10.1016/j.electacta.2010.02.082

    Article  CAS  Google Scholar 

  139. Dastangoo H, Poureshghi F (2015) On the ability of metal-nitroprusside complexes as electrode modifiers: characterization and electrochemical study of palladized aluminum electrode modified with iron pentacyanonitrosylferrate. Electrochim Acta 163:271–279. https://doi.org/10.1016/j.electacta.2015.02.003

    Article  CAS  Google Scholar 

  140. Paim LL, Hammer P, Stradiotto NR (2011) Electrochemical behavior of a glassy carbon electrode chemically modified with nickel pentacyanonitrosylferrate in presence of sulfur compounds. Electroanalysis 23:1488–1496. https://doi.org/10.1002/elan.201000723

    Article  CAS  Google Scholar 

  141. Ellis D, Eckhoff M, Neff VD (1981) Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue. J Phys Chem 85:1225–1231. https://doi.org/10.1021/j150609a026

    Article  CAS  Google Scholar 

  142. Rosseinsky DR, Lim H, Jiang H, Chai JW (2003) Optical charge-transfer in iron(III) hexacyanoferrate(II): electro-intercalated cations induce lattice-energy-dependent ground-state energies. Inorg Chem 42:6015–6023. https://doi.org/10.1021/ic020575s

    Article  CAS  PubMed  Google Scholar 

  143. Rosseinsky DR, Glasser L, Jenkins HDB (2004) Thermodynamic clarification of the curious ferric/potassium ion exchange accompanying the electrochromic redox reactions of Prussian blue, iron(III) hexacyanoferrate(II). J Am Chem Soc 126:10472–10477. https://doi.org/10.1021/ja040055r

    Article  CAS  PubMed  Google Scholar 

  144. Agrisuelas J, García-Jareño JJ, Gimenez-Romero D, Vicente F (2009) Insights on the mechanism of insoluble-to-soluble Prussian blue transformation. J Electrochem Soc 156:P149–P156. https://doi.org/10.1149/1.3177258

    Article  CAS  Google Scholar 

  145. Malev V, Kurdakova V, Kondratiev V, Zigel V (2004) Indium hexacyanoferrate films, voltammetric and impedance characterization. Solid State Ionics 169:95–104. https://doi.org/10.1016/j.ssi.2003.11.028

    Article  CAS  Google Scholar 

  146. Li F, Ma D, Qian J, Yang B, Xu Z, Li D, Wu Z, Wang J (2019) One-step hydrothermal growth and electrochromic properties of highly stable Prussian green film and device. Sol Energy Mater Sol Cells 192:103–108. https://doi.org/10.1016/j.solmat.2018.12.024

    Article  CAS  Google Scholar 

  147. Chen R, Huang Y, Xie M, Wang Z, Ye Y, Li L, Wu F (2016) Chemical inhibition method to synthesize highly crystalline Prussian blue analogs for sodium-ion battery cathodes. ACS Appl Mater Interfaces 8:31669–31676. https://doi.org/10.1021/acsami.6b10884

    Article  CAS  PubMed  Google Scholar 

  148. Li C, Zang R, Li P, Man Z, Wang S, Li X, Wu Y, Liu S, Wang G (2018) High crystalline Prussian white nanocubes as a promising cathode for sodium-ion batteries. Chem Asian J 13:342–349. https://doi.org/10.1002/asia.201701715

    Article  CAS  PubMed  Google Scholar 

  149. Brown DB, Shriver DF (1969) Structures and solid-state reactions of Prussian blue analogs containing chromium, manganese, iron, and cobalt. Inorg Chem 8:37–42. https://doi.org/10.1021/ic50071a009

    Article  CAS  Google Scholar 

  150. Zentkova M, Mihalik M (2019) The effect of pressure on magnetic properties of Prussian blue analogues. Crystals 9:112. https://doi.org/10.3390/cryst9020112

    Article  CAS  Google Scholar 

  151. Mullaliu A, Sougrati M-T, Louvain N, Aquilanti G, Doublet M-L, Stievano L, Giorgetti M (2017) The electrochemical activity of the nitrosyl ligand in copper nitroprusside: a new possible redox mechanism for lithium battery electrode materials? Electrochim Acta 257:364–371. https://doi.org/10.1016/j.electacta.2017.10.107

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present author is grateful for all organizations that help to access old scientific works free of charge: the Royal Society, Gallica Bibliotheque Numerique, Google (Google Books), HathiTrust Digital Library, and all others.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir D. Ivanov.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.D. Four decades of electrochemical investigation of Prussian blue. Ionics 26, 531–547 (2020). https://doi.org/10.1007/s11581-019-03292-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03292-y

Keywords

Navigation