Skip to main content
Log in

Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Composites of graphene-encapsulated ZnO particles (ZnO/rGO) have been produced through a simple yet effective spray drying method followed by a heating treatment in inert atmosphere. The graphene-coated structure can guarantee good structural stability and rapid ionic transport of the composites. The influences of drying methods, graphene contents, and precursors of ZnO on the morphology, particles size, and electrochemical properties of the resulted composites have been investigated. When they are used as anode materials for lithium ion batteries, the optimized ZnO/rGO composite achieves a high initial Coulombic efficiency of 69.8%, and it maintains a reversible specific discharge capacity of 793 mA h g1 after 200 cycles at 100 mA g1, 608 mA h g1 after 250 cycles at 200 mA g1, and 327 mA h g1 after 450 cycles at 500 mA g1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  PubMed  Google Scholar 

  2. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  CAS  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Nanomaterials for rechargeable lithium batteries. Angew Chem Int Ed 47(16):2930–2946. https://doi.org/10.1002/anie.200702505

    Article  CAS  Google Scholar 

  4. Liu D, Kong Z, Liu X, Fu A, Wang Y, Guo YG, Guo P, Li H, Zhao XS (2018) Spray-drying-induced assembly of skeleton-structured SnO2/graphene composite spheres as superior anode materials for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 10(3):2515–2525. https://doi.org/10.1021/acsami.7b15916

    Article  CAS  PubMed  Google Scholar 

  5. Tan Q, Kong Z, Guan X, Zhang LY, Jiao Z, Chen HC, Wu G, Xu B (2019) Hierarchical zinc oxide/reduced graphene oxide composite: preparation route, mechanism study and lithium ion storage. J Colloid Interf Sci 548:233–243. https://doi.org/10.1016/j.jcis.2019.04.041

    Article  CAS  Google Scholar 

  6. Kong Z, Liu D, Liu X, Fu A, Wang Y, Guo P, Li H (2019) One-pot decoration of graphene with SnO2 nanocrystals by an elevated hydrothermal process and their application as anode materials for lithium ion batteries. J Nanosci Nanotechnol 19(2):850–858. https://doi.org/10.1166/jnn.2019.15889

    Article  CAS  PubMed  Google Scholar 

  7. Xu B, Guan X, Zhang LY, Liu X, Jiao Z, Liu X, Hu X, Zhao XS (2018) A simple route to preparing γ-Fe2O3/RGO composite electrode materials for lithium ion batteries. J Mater Chem A 6(9):4048–4054. https://doi.org/10.1039/c7ta10052c

    Article  CAS  Google Scholar 

  8. Jiang TC, Bu FX, Feng XX, Shakir I, Hao GL, Xu YX (2017) Porous Fe2O3 nanoframeworks encapsulated within three-dimensional graphene as high-performance flexible anode for lithium-ion battery. ACS Nano 11(5):5140–5147. https://doi.org/10.1021/acsnano.7b02198

    Article  CAS  PubMed  Google Scholar 

  9. Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Funct Mater 26(9):1428–1436. https://doi.org/10.1002/adfm.201504695

    Article  CAS  Google Scholar 

  10. Ren HM, Ding YH, Chang FH, He X, Feng JQ, Wang CF, Jiang Y, Zhang P (2012) Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries. Appl Surf Sci 263:54–57. https://doi.org/10.1016/j.apsusc.2012.08.107

    Article  CAS  Google Scholar 

  11. Weng WS, Lin J, Du YC, Ge XF, Zhou XS, Bao JC (2018) Template-free synthesis of metal oxide hollow micro-/nanospheres via Ostwald ripening for lithium-ion batteries. J Mater Chem A 6(22):10168–10175. https://doi.org/10.1039/C8TA03161D

    Article  CAS  Google Scholar 

  12. Wu J, Chen C, Hao Y, Wang C (2015) Enhanced electrochemical performance of nanosheet ZnO/reduced graphene oxide composites as anode for lithium-ion batteries. Colloid Surface A 468:17–21. https://doi.org/10.1016/j.colsurfa.2014.12.009

    Article  CAS  Google Scholar 

  13. Li R, Yue W, Chen X (2019) Fabrication of porous carbon-coated ZnO nanoparticles on electrochemical exfoliated graphene as an anode material for lithium-ion batteries. J Alloys Compd 784:800–806. https://doi.org/10.1016/j.jallcom.2019.01.117

    Article  CAS  Google Scholar 

  14. Kundu S, Sain S, Yoshio M, Kar T, Gunawardhana N, Pradhan SK (2015) Structural interpretation of chemically synthesized ZnO nanorod and its application in lithium ion battery. Appl Surf Sci 329:206–211. https://doi.org/10.1016/j.apsusc.2014.12.152

    Article  CAS  Google Scholar 

  15. Xie Q, Liu P, Zeng D, Xu W, Wang L, Zhu ZZ, Mai L, Peng DL (2018) Dual electrostatic assembly of graphene encapsulated nanosheet-assembled ZnO-Mn-C hollow microspheres as a lithium ion battery anode. Adv Funct Mater 28(19):1707433. https://doi.org/10.1002/adfm.201707433

    Article  CAS  Google Scholar 

  16. Yu M, Wang A, Wang Y, Li C, Shi G (2014) An alumina stabilized ZnO-graphene anode for lithium ion batteries via atomic layer deposition. Nanoscale 6(19):11419–11424. https://doi.org/10.1039/c4nr02576h

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Wei Y, Li H, Zhao Y, Yin F, Wang X (2016) Simple fabrication of free-standing ZnO/graphene/carbon nanotube composite anode for lithium-ion batteries. Mater Lett 184:235–238. https://doi.org/10.1016/j.matlet.2016.08.017

    Article  CAS  Google Scholar 

  18. Guo R, Yue W, An Y, Ren Y, Yan X (2014) Graphene-encapsulated porous carbon-ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim Acta 135:161–167. https://doi.org/10.1016/j.electacta.2014.04.160

    Article  CAS  Google Scholar 

  19. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan HS, Zhang TF, Lv CL, Wu XL (2018) N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater 28(47):1805444. https://doi.org/10.1002/adfm.201805444

    Article  CAS  Google Scholar 

  20. Liu DS, Liu DH, Hou BH, Wang YY, Guo JZ, Ning QL, Wu XL (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300. https://doi.org/10.1016/j.electacta.2018.01.129

    Article  CAS  Google Scholar 

  21. Guo JZ, Wu XL, Wan F, Wang J, Zhang XH, Wang RS (2016) A superior Na3V2(PO4)3 -based nanocomposite enhanced by both N-doped coating carbon and graphene as the cathode for sodium-ion batteries. Chem-Eur J 21(48):17371–17378. https://doi.org/10.1002/chem.201502583

    Article  CAS  Google Scholar 

  22. Wan F, Guo JZ, Zhang XH, Zhang JP, Sun HZ, Yan Q, Han DX, Niu L, Wu XL (2016) In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl Mater Interfaces 8(12):7790–7799. https://doi.org/10.1021/acsami.5b12242

    Article  CAS  PubMed  Google Scholar 

  23. Wang YY, Fan H, Hou BH, Rui XH, Ning QL, Cui Z, Guo JZ, Yang Y, Wu XL (2018) Ni1.5CoSe5 nanocubes embedded in 3D dual N-doped carbon network as advanced anode material in sodium-ion full cells with superior low-temperature and high-power properties. J Mater Chem A 6(45):22966–22975. https://doi.org/10.1039/C8TA09264H

    Article  CAS  Google Scholar 

  24. Gu EL, Liu SH, Zhang ZZ, Fang YY, Zhou XS, Bao JC (2018) An efficient sodium-ion battery consisting of reduced graphene oxide bonded Na3V2(PO4)3 in a composite carbon network. J Alloys Compd 767:131–140. https://doi.org/10.1016/j.jallcom.2018.07.082

    Article  CAS  Google Scholar 

  25. Tu FZ, Han Y, Du YC, Ge XF, Weng WS, Zhou XS, Bao JC (2019) Hierarchical nanospheres constructed by ultrathin MoS2 nanosheets braced on nitrogen-doped carbon polyhedra for efficient lithium and sodium storage ACS. Appl Mater Interfaces 11(2):2112–2119. https://doi.org/10.1021/acsami.8b19662

    Article  CAS  Google Scholar 

  26. Yuan G, Xiang J, Jin H, Wu L, Jin Y, Zhao Y (2018) Anchoring ZnO nanoparticles in nitrogen-doped graphene sheets as a high-performance anode material for lithium-ion batteries. Materials 11(1):96. https://doi.org/10.3390/ma11010096

    Article  CAS  PubMed Central  Google Scholar 

  27. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502. https://doi.org/10.1021/nl802558y

    Article  CAS  PubMed  Google Scholar 

  28. Hsieh C-T, Lin C-Y, Chen Y-F, Lin J-S (2013) Synthesis of ZnO@Graphene composites as anode materials for lithium ion batteries. Electrochim Acta 111:359–365. https://doi.org/10.1016/j.electacta.2013.07.197

    Article  CAS  Google Scholar 

  29. Li H, Wei Y, Zhang Y, Zhang C, Wang G, Zhao Y, Yin F, Bakenov Z (2016) In situ sol-gel synthesis of ultrafine ZnO nanocrystals anchored on graphene as anode material for lithium-ion batteries. Ceram Int 42(10):12371–12377. https://doi.org/10.1016/j.ceramint.2016.05.010

    Article  CAS  Google Scholar 

  30. Guan X, Liu X, Xu B, Liu X, Kong Z, Song M, Fu A, Li Y, Guo P, Li H (2018) Carbon wrapped Ni3S2 nanocrystals anchored on graphene sheets as anode materials for lithium-ion battery and the study on their capacity evolution. Nanomaterials 8(10):760. https://doi.org/10.3390/nano8100760

    Article  PubMed Central  Google Scholar 

  31. Yuan Y, Fu A, Wang Y, Guo P, Wu G, Li H, Zhao XS (2017) Spray drying assisted assembly of ZnO nanocrystals using cellulose as sacrificial template and studies on their photoluminescent and photocatalytic properties. Colloid Surface A 522:173–182. https://doi.org/10.1016/j.colsurfa.2017.02.068

    Article  CAS  Google Scholar 

  32. Kong Z, Liu X, Wang T, Fu A, Li Y, Guo P, Guo Y-G, Li H, Zhao XS (2019) Three-dimensional hollow spheres of porous SnO2/rGO composite as high-performance anode for sodium ion batteries. Appl Surf Sci 479:198–208. https://doi.org/10.1016/j.apsusc.2019.01.210

    Article  CAS  Google Scholar 

  33. Liu X, Liu X, Sun B, Zhou H, Fu A, Wang Y, Guo Y-G, Guo P, Li H (2018) Carbon materials with hierarchical porosity: effect of template removal strategy and study on their electrochemical properties. Carbon 130:680–691. https://doi.org/10.1016/j.carbon.2018.01.046

    Article  CAS  Google Scholar 

  34. Liang T, Liu X, Liu X, Guan X, Wang C, Fu A, Li Y, Guo P, Li H (2018) Carbon/Li4Ti5O12 composite spheres prepared using Chinese yam as carbon source with ultrahigh capacity as anode materials for lithium ion batteries. Energy Technol 6(10):2036–2044. https://doi.org/10.1002/ente.201800144

    Article  CAS  Google Scholar 

  35. Ahmad M, Ahmed E, Hong ZL, Xu JF, Khalid NR, Elhissi A, Ahmed W (2013) A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl Surf Sci 274:273–281. https://doi.org/10.1016/j.apsusc.2013.03.035

    Article  CAS  Google Scholar 

  36. Yang T, Liu Y, Huang Z, Liu J, Bian P, Ling CD, Liu H, Wang G, Zheng R (2018) In situ growth of ZnO nanodots on carbon hierarchical hollow spheres as high-performance electrodes for lithium-ion batteries. J Alloys Compd 735:1079–1087. https://doi.org/10.1016/j.jallcom.2017.11.125

    Article  CAS  Google Scholar 

  37. Sun F, Gao J, Wu H, Liu X, Wang L, Pi X, Lu Y (2017) Confined growth of small ZnO nanoparticles in a nitrogen-rich carbon framework: advanced anodes for long-life Li-ion batteries. Carbon 113:46–54. https://doi.org/10.1016/j.carbon.2016.11.039

    Article  CAS  Google Scholar 

  38. Benabdallah O, Edfouf Z, Lallaoui A, Saadoune I, Abd-Lefdil M, Cherkaoui El Moursli F (2016) Improved electrochemical properties of sol–gel prepared ZnO/graphene composite. Solid State Ionics 297:7–12. https://doi.org/10.1016/j.ssi.2016.09.009

    Article  CAS  Google Scholar 

  39. Zhang G, Zhang H, Zhang X, Zeng W, Su Q, Du G, Duan H (2015) Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries. Electrochim Acta 186:165–173. https://doi.org/10.1016/j.electacta.2015.10.133

    Article  CAS  Google Scholar 

  40. Li S, Xiao Y, Wang X, Cao M (2014) A ZnO-graphene hybrid with remarkably enhanced lithium storage capability. Phys Chem Chem Phys 16(47):25846–25853. https://doi.org/10.1039/c4cp03964e

    Article  CAS  PubMed  Google Scholar 

  41. Liu DH, Lü HY, Wu XL, Hou BH, Wan F, Bao SD, Yan QY, Xie HM, Wang RS (2015) Constructing the optimal conductive network in MnO-based nanohybrids as high-rate and long-life anode materials for lithium-ion batteries. J Mater Chem A 3(39):19738–19746. https://doi.org/10.1039/C5TA03556B

    Article  CAS  Google Scholar 

  42. Liu DH, Lü HY, Wu XL, Wang J, Yan X, Zhang JP, Geng HB, Zhang Y, Yan QY (2016) A new strategy for developing superior electrode materials for advanced batteries: using a positive cycling trend to compensate the negative one to achieve ultralong cycling stability. Nanoscale Horiz 1(6):496–501. https://doi.org/10.1039/C6NH00150E

    Article  CAS  PubMed  Google Scholar 

  43. Yang C, Qing Y, An K, Chen J, Tan J, Zhang Z, Wang L, Liu C (2018) ZnO nanoparticles anchored on nitrogen and sulfur co-doped graphene sheets for lithium-ion batteries applications. Ionics 24(12):3781–3791. https://doi.org/10.1007/s11581-018-2555-x

    Article  CAS  Google Scholar 

  44. Pambudi YDS, Setiabudy R, Yuwono AH, Kartini E, Lee JK, Hudaya C (2018) Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition. Ionics 25(2):457–466. https://doi.org/10.1007/s11581-018-2723-z

    Article  CAS  Google Scholar 

  45. Xu L-L, Bian S-W, Song K-L (2014) Graphene sheets decorated with ZnO nanoparticles as anode materials for lithium ion batteries. J Mater Sci 49(18):6217–6224. https://doi.org/10.1007/s10853-014-8346-5

    Article  CAS  Google Scholar 

  46. Li N, Jin SX, Liao QY, Wang CX (2014) ZnO anchored on vertically aligned graphene: binder-free anode materials for lithium-ion batteries. ACS Appl Mater Interfaces 6(23):20590–20596. https://doi.org/10.1021/am507046k

    Article  CAS  PubMed  Google Scholar 

  47. Yu M, Shao D, Lu F, Sun X, Sun H, Hu T, Wang G, Sawyer S, Qiu H, Lian J (2013) ZnO/graphene nanocomposite fabricated by high energy ball milling with greatly enhanced lithium storage capability. Electrochem Commun 34:312–315. https://doi.org/10.1016/j.elecom.2013.07.013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Double First Class University Construction of Shandong Province and the Taishan Scholars Advantageous and Distinctive Discipline Program of Shandong Province for supporting the research team of energy storage materials. Y. Li thanks the Taishan Scholar Program of Shandong Province (201511029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Guo Guo or Hongliang Li.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 355 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Kong, Z., Guo, F. et al. Graphene-encapsulated ZnO composites as high-performance anode materials for lithium ion batteries. Ionics 26, 565–577 (2020). https://doi.org/10.1007/s11581-019-03219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03219-7

Keywords

Navigation