Skip to main content
Log in

Synthesis of graphene/carbon nanofiber for electrochemical determination of levodopa in the presence of uric acid

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon nanofiber (CNF) was prepared by electrospinning using polypropylene and nickel was coated on the CNF by electroless plating. Then, graphene (Gr) was synthesized on the surface of nickel by chemical vapor deposition. After etching nickel, the Gr/CNF was obtained eventually and then used as a working electrode for the determination of levodopa in the presence of uric acid by cyclic voltammetry and differential pulse voltammetry. The morphology and structure were investigated by scanning electron microscopy and Raman spectroscopy, respectively. The results indicate that the electrode exhibits a high sensitivity of 0.26 μA·μM−1 and a low measured limit of detection of 1 μM for levodopa in the range of 1–60 μM. The electrode shows excellent selectivity, reproducibility, and stability. It was also applied to determine levodopa in the spiked human urine samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jindal K, Tomar M, Gupta V (2014) Inducing electrocatalytic functionality in ZnO thin film by N doping to realize a third generation uric acid biosensor. Biosens Bioelectron 55(9):57–65. https://doi.org/10.1016/j.bios.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  2. Mazloum-Ardakani M, Taleat Z, Khoshroo A, Beitollahi H, Dehghani H (2012) Electrocatalytic oxidation and voltammetric determination of levodopa in the presence of carbidopa at the surface of a nanostructure based electrochemical sensor. Biosens Bioelectron 35(1):75–81. https://doi.org/10.1016/j.bios.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  3. Yue HY, Wang B, Huang S, Gao X, Lin XY, Yao LH, Guan EH, Zhang HJ, Song SS (2017) Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics 23(12):3479–3486. https://doi.org/10.1007/s11581-017-2153-3

    Article  CAS  Google Scholar 

  4. Hu GZ, Zhang DP, Wu WL, Yang ZS (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloids Surf B 62(2):199–205. https://doi.org/10.1016/j.colsurfb.2007.10.001

    Article  CAS  Google Scholar 

  5. Yuan Q, Liu Y, Ye C, Sun H, Dai D, Wei Q, Lai G, Wu T, Yu A, Fu L, Chee K, Lin C (2018) Highly stable and regenerative graphene-diamond hybrid electrochemical biosensor for fouling target dopamine detection. Biosens Bioelectron 111(111):117–123. https://doi.org/10.1016/j.bios.2018.04.006

    Article  CAS  PubMed  Google Scholar 

  6. Fu L, Wang A, Lai G, Su W, Malherbe F, Yu J, Lin C, Yu A (2018) Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 180(180):248–253. https://doi.org/10.1016/j.talanta.2017.12.058

    Article  CAS  PubMed  Google Scholar 

  7. Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S (2016) Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron 86(86):109–114. https://doi.org/10.1016/j.bios.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  8. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2014) Novel graphene flowers modified carbon fibers for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron 53(4):220–224. https://doi.org/10.1016/j.bios.2013.09.064

    Article  CAS  PubMed  Google Scholar 

  9. Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56(56):300–306. https://doi.org/10.1016/j.bios.2014.01.037

    Article  CAS  PubMed  Google Scholar 

  10. Yue HY, Zhang H, Huang S, Lin XY, Gao X, Chang J, Yao LH, Guo EJ (2017) Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens Bioelectron 89(Pt 1):592–597. https://doi.org/10.1016/j.bios.2016.01.078

    Article  CAS  PubMed  Google Scholar 

  11. Zhao D, Yu G, Tian K, Xu C (2016) A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens Bioelectron 82(82):119–126. https://doi.org/10.1016/j.bios.2016.03.074

    Article  CAS  PubMed  Google Scholar 

  12. Arvand M, Ghodsi N (2013) A voltammetric sensor based on graphene-modified electrode for the determination of trace amounts of l-dopa in mouse brain extract and pharmaceuticals. J Solid State Electrochem 17(3):775–784. https://doi.org/10.1007/s10008-012-1929-7

    Article  CAS  Google Scholar 

  13. Luo YC, Do JS, Liu CC (2006) An amperometric uric acid biosensor based on modified Ir-C electrode. Biosens Bioelectron 22(4):482–488. https://doi.org/10.1016/j.bios.2006.07.013

    Article  CAS  PubMed  Google Scholar 

  14. Arvand M, Ghodsi N (2014) Electrospun TiO2 nanofiber/graphite oxide modified electrode for electrochemical detection of L-DOPA in human cerebrospinal fluid. Sensors Actuators B 204(204):393–401. https://doi.org/10.1016/j.snb.2014.07.110

    Article  CAS  Google Scholar 

  15. Rezaei B, Shams-Ghahfarokhi L, Havakeshian E, Ensafi AA (2016) An electrochemical biosensor based on nanoporous stainless steel modified by gold and palladium nanoparticles for simultaneous determination of levodopa and uric acid. Talanta 158(158):42–50. https://doi.org/10.1016/j.talanta.2016.04.061

    Article  CAS  PubMed  Google Scholar 

  16. Jong KD, Geus J (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510. https://doi.org/10.1081/CR-100101954

    Article  Google Scholar 

  17. Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos Part B 38(2):228–235. https://doi.org/10.1016/j.compositesb.2006.04.003

    Article  CAS  Google Scholar 

  18. Tolosa A, Krüner B, Jäckel N, Aslan M, Vakifahmetoglu C, Presser V (2016) Electrospinning and electrospraying of silicon oxycarbide-derived nanoporous carbon for supercapacitor electrodes. J Power Sources 313(313):178–188. https://doi.org/10.1016/j.jpowsour.2016.02.077

    Article  CAS  Google Scholar 

  19. Kim C, Cho YJ, Yun WY, Ngoc BTN, Yang KS, Chang DR, Lee JW, Kojima M, Kim YA, Endo M (2007) Fabrications and structural characterization of ultra-fine carbon fibres by electrospinning of polymer blends. Solid State Commun 142(1–2):20–23. https://doi.org/10.1016/j.ssc.2007.01.030

    Article  CAS  Google Scholar 

  20. Liu C, Liu J, Wang J, Li J, Luo R, Shen J, Sun X, Han W, Wang L (2018) Electrospun mulberry-like hierarchical carbon fiber web for high-performance supercapacitors. J Colloid Interface Sci 512(512):713–721. https://doi.org/10.1016/j.jcis.2017.10.093

    Article  CAS  PubMed  Google Scholar 

  21. Chinnappan A, Lee JKY, Jayathilaka WADM, Ramakrishna S (2018) Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method. Int J Hydrog Energy 43(2):721–729. https://doi.org/10.1016/j.ijhydene.2017.11.028

    Article  CAS  Google Scholar 

  22. Ning H, Xie H, Zhao Q, Liu J, Tian W, Wang Y, Wu M (2017) Electrospinning ZnO/carbon nanofiber as binder-free and self-supported anode for Li-ion batteries. J Alloys Compd 722(722):716–720. https://doi.org/10.1016/j.jallcom.2017.06.099

    Article  CAS  Google Scholar 

  23. Xu J, Zhang L, Xu G, Sun Z, Zhang C, Ma X, Qi C, Zhang L, Jia D (2018) Facile synthesis of NiS anchored carbon nanofibers for high-performance supercapacitors. Appl Surf Sci 434(434):112–119. https://doi.org/10.1016/j.apsusc.2017.09.233

    Article  CAS  Google Scholar 

  24. Wei Y, Zhang L, Gong C, Liu S, Zhang M, Shi Y, Zhang J (2018) Fabrication of TiN/carbon nanofibers by electrospinning and their electromagnetic wave absorption properties. J Alloys Compd 735(735):1488–1493. https://doi.org/10.1016/j.jallcom.2017.11.295

    Article  CAS  Google Scholar 

  25. Cinti S, Arduini F (2017) Graphene-based screen-printed electrochemical (bio)sensors and their applications: efforts and criticisms. Biosens Bioelectron 89(Pt 1):107–122. https://doi.org/10.1016/j.bios.2016.07.005

    Article  CAS  PubMed  Google Scholar 

  26. Wang MH, Ji BW, Gu XW, Tian HC, Kang XY, Yang B, Wang XL, Chen X, Li CY, Liu JQ (2018) Direct electrodeposition of graphene enhanced conductive polymer on microelectrode for biosensing application. Biosens Bioelectron 99(99):99–107. https://doi.org/10.1016/j.bios.2017.07.030

    Article  CAS  PubMed  Google Scholar 

  27. Fu L, Lai G, Jia B, Yu A (2014) Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites. Electrocatalysis 6(1):72–76. https://doi.org/10.1007/s12678-014-0219-9

    Article  CAS  Google Scholar 

  28. Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89(Pt 1):123–135. https://doi.org/10.1016/j.bios.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  29. Afsahi S, Lerner MB, Goldstein JM, Lee J, Tang X, Bagarozzi DA, Pan D, Locascio L, Walker A, Barron F, Goldsmith BR (2018) Novel graphene-based biosensor for early detection of Zika virus infection. Biosens Bioelectron 100(100):85–88. https://doi.org/10.1016/j.bios.2017.08.051

    Article  CAS  PubMed  Google Scholar 

  30. Zhang H, Zhang H, Aldalbahi A, Zuo X, Fan C, Mi X (2017) Fluorescent biosensors enabled by graphene and graphene oxide. Biosens Bioelectron 89(Pt 1):96–106. https://doi.org/10.1016/j.bios.2016.07.030

    Article  CAS  PubMed  Google Scholar 

  31. Shi L, Chen K, Du R, Bachmatiuk A, Rümmeli MH, Xie K, Huang Y, Zhang Y, Liu Z (2016) Scalable seashell-based chemical vapor deposition growth of three-dimensional graphene foams for oil–water separation. J Am Chem Soc 138(20):6360–6363. https://doi.org/10.1021/jacs.6b02262

    Article  CAS  PubMed  Google Scholar 

  32. Li Q, Newberg JT, Walter EC, And JCH, Penner RM (2004) Polycrystalline molybdenum disulfide (2H−MoS2) nano- and microribbons by electrochemical/chemical synthesis. Nano Lett 4(2):277–281. https://doi.org/10.1021/nl035011f

    Article  CAS  Google Scholar 

  33. Dryhurst G (1972) Electrochemical oxidation of uric acid and xanthine at the pyrolytic graphite electrode. J Electrochem Soc 119(12):1659–1664. https://doi.org/10.1149/1.2404066

    Article  CAS  Google Scholar 

  34. Yoon SM, Choi WM, Baik H, Shin HJ, Song I, Kwon MS, Bae JJ, Kim H, Lee YH, Choi JY (2012) Synthesis of multilayer graphene balls by carbon segregation from nickel nanoparticles. ACS Nano 6(8):6803–6811. https://doi.org/10.1021/nn301546z

    Article  CAS  PubMed  Google Scholar 

  35. Hadi M, Rouhollahi A (2012) Simultaneous electrochemical sensing of ascorbic acid, dopamine and uric acid at anodized nanocrystalline graphite-like pyrolytic carbon film electrode. Anal Chim Acta 721(7):55–60. https://doi.org/10.1016/j.aca.2012.01.051

    Article  CAS  PubMed  Google Scholar 

  36. Eksin E, Zor E, Erdem A, Bingol H (2017) Electrochemical monitoring of biointeraction by graphene-based material modified pencil graphite electrode. Biosensors & Bioelectronics 92:207–14. https://doi.org/10.1016/j.bios.2017.02.016

Download references

Funding

This work is supported by the Natural Science Foundation of Heilongjiang Province (LC2015020), Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China (2015192), the Innovative Talent Fund of Harbin city (2016RAQXJ185), and Science Funds for the Young Innovative Talents of HUST (201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan Yue.

Additional information

Highlights

1. Nickel is coated on the carbon nanofiber (CNF) by electroless nickel plating.

2. Graphene (Gr) was grown on the surface of nickel by chemical vapor deposition.

3. The Gr/CNF shows a high sensitivity of 0.26 μA·μM−1 for determination of levodopa.

4. The Gr/CNF also shows a low measured limit of detection, excellent selectivity and stability.

Electronic supplementary material

ESM 1

(DOC 281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W.Q., Yue, H.Y., Yu, Z.M. et al. Synthesis of graphene/carbon nanofiber for electrochemical determination of levodopa in the presence of uric acid. Ionics 25, 2835–2843 (2019). https://doi.org/10.1007/s11581-018-2801-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2801-2

Keywords

Navigation