Skip to main content

Advertisement

Log in

Incident photon-to-current efficiency of thermally treated SWCNTs-based nanocomposite for dye-sensitized solar cell

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This study focuses on incident photon-to-current efficiency (IPCE) performance of In2O3-SWCNTs for dye-sensitized solar cell (DSSC) application. The thin films were prepared by sol-gel method using spin-coating technique annealed at 400, 450, 500, 550, and 600 °C. Morphology transition of In2O3 from spherical to cubic and then octahedral structure occurred as the annealing temperature rises. The photoanode annealed at 450 °C (cubic structure) provides a stable phase of cubic structure with large surface area and optimum thickness for effective dye adsorption. However, the IPCE value does not solely depends on the dye adsorption of photoanodes (light harvesting efficiency (LHE)) but the electron injection efficiency (ηinj) and the collection efficiency (ηcoll). Smaller energy bandgap of photoanodes favors the injected electrons with higher driving force to the conduction band (CB) of the photoanode, which in turn increases the ηinj from the LUMO of dye to the In2O3-SWCNTs CB. Besides that, the absence of single-walled carbon nanotubes (SWCNTs) above 500 °C caused the energy bandgap to increase and leads to lower driving force of injected electrons. In addition, SWCNTs are capable of absorbing visible light faster than other materials. Therefore, the cubic structure-based photoanode (450 °C) exhibited better electron transport with larger driving force on injected electron (ηinj) that decreased the electron recombination rate and increased electron lifetime and subsequently obtained larger charge collection efficiency (ηcoll) of almost 99%. Consequently, the IPCE performance of DSSC was enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  2. Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Optical, morphology and electrical properties of In2O3 incorporating acid-treated single-walled carbon nanotubes based DSSC. J Phys D Appl Phys 49:075601

    Article  CAS  Google Scholar 

  3. Mahalingam S, Abdullah H, Razali MZ, Yarmo MA, Shaari S, Omar A (2016) Structural, morphological, photovoltaic and electron transport properties of ZnO based DSSC with different concentrations of MWCNTs. Mater Sci Forum 846

  4. Abdullah H, Atiqah NA, Omar A, Asshaari I, Mahalingam S, Razali Z, Shaari S, Mandeep JS, Misran H (2015) Structural, morphological, electrical and electron transport studies in ZnO–rGO (wt%= 0.01, 0.05 and 0.1) based dye-sensitized solar cell. J Mater Sci-Mater Electron 26:2263–2270

    Article  CAS  Google Scholar 

  5. Mahalingam S, Abdullah H, Omar A, Nawi NAM, Shaari S, Muchtar A, Asshari I (2016) Effect of morphology on SnO2/MWCNT-based DSSC performance with various annealing temperatures. Adv Mater Res 1107:649

    Article  Google Scholar 

  6. Abdullah H, Yunos NH, Mahalingam S, Ahmad M, Yuliarto B (2017) Photovoltaic and EIS performance of SnO2/SWCNTS based–sensitized solar cell. Procedia Engineer 170:1–7

    Article  CAS  Google Scholar 

  7. Mahalingam S, Abdullah H, Shaari S, Muchtar A (2016) Morphological and electron mobility studies in nanograss In2O3 DSSC incorporating multi-walled carbon nanotubes. Ionics 22:1985–1997

    Article  CAS  Google Scholar 

  8. Mahalingam S, Abdullah H, Manap A (2018) Role of acid-treated CNTs in chemical and electrochemical impedance study of dye-sensitised solar cell. Electrochim Acta 264:275–283

    Article  CAS  Google Scholar 

  9. Mahalingam S, Abdullah H, Shaari S, Muchtar A, Asshari I (2015) Structural, morphological, and electron transport studies of annealing dependent In2O3 dye-sensitized solar cell. Sci World J 2015

  10. Liu T, Yu K, Gao L, Chen H, Wang N, Hao L, Li T, He H, Guo Z (2017) A graphene quantum dot decorated SrRuO3 mesoporous film as an efficient counter electrode for high-performance dye-sensitized solar cells. J Mater Chem A 5(34):17848–17855

    Article  CAS  Google Scholar 

  11. Mori S, Asano A (2010) Light intensity independent electron transport and slow charge recombination in dye-sensitized In2O3 solar cells: in contrast to the case of TiO2. J Phys Chem C 114:13113–13117

    Article  CAS  Google Scholar 

  12. Mahalingam S, Abdullah H (2016) Electron transport study of indium oxide as photoanode in DSSCs: a review. Renew Sust Energ Rev 63:245–255

    Article  CAS  Google Scholar 

  13. Hou Q, Ren J, Chen H, Yang P, Shao Q, Zhao M, Zhao X, He H, Wang N, Luo Q, Guo Z (2018) Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells. Chem Electro Chem 5:72–731

    Google Scholar 

  14. Luo Q, Ma H, Hou Q, Li Y, Ren J, Dai X, Yao Z, Zhou Y, Xiang L, Du H, He H (2018) All-carbon-electrode-based endurable flexible perovskite solar cells. Adv Funct Mater. https://doi.org/10.1002/adfm.201706777

  15. Liu T, Mai X, Chen H, Ren J, Liu Z, Li Y, Gao L, Wang N, Zhang JX, He H, Guo Z (2018) Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells. Nanoscale 10:4194–4201

    Article  CAS  PubMed  Google Scholar 

  16. Luo Q, Ma H, Hao F, Hou Q, Ren J, Wu L, Yao Z, Zhou Y, Wang N, Jiang K, Lin H (2017) Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv Funct Mater. https://doi.org/10.1002/adfm.201703068

  17. Sun K, Fan R, Zhang Z, Shi Z, Xie P, Wang Z, Fan G, Wang N, Liu C, Li T, Guo Z (2018) An overview of metamaterials and their achievements in wireless power transfer. J Mater Chem C. https://doi.org/10.1039/C7TC03384B

  18. Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, Gu J, Wu Y, Liu H, Guo Z (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites by chemically modified graphene via in-situ polymerization and electrospinning-hot press technology. J Mater Chem C. https://doi.org/10.1039/C8TC00452H

  19. Abdullah H, Lye SY, Mahalingam S, Asshari I, Yuliarto B, Manap A (2018) Gamma radiation induced nickel oxide/reduced graphene oxide nanoflowers for improved dye-sensitized solar cells. J Mater Sci Mater Electron 29:9643–9651

    Article  CAS  Google Scholar 

  20. Huang J, Cao Y, Shao Q, Peng X, Guo Z (2017) Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: morphology dependence of fibrillar vs particulate structures. Ind Eng Chem Res 56:10689–10701

    Article  CAS  Google Scholar 

  21. Lin C, Hu L, Cheng C, Sun K, Guo X, Shao Q, Li J, Wang N, Guo Z (2018) Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim Acta 260:65–72

    Article  CAS  Google Scholar 

  22. Ran F, Yang X, Shao L (2018) Recent progress in carbon-based nanoarchitectures for advanced supercapacitors. Advanced Composites and Hybrid Materials 1:32–55

    Article  Google Scholar 

  23. Nam JG, Park YJ, Kim BS, Lee JS (2010) Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scr Mater 62:148–150

    Article  CAS  Google Scholar 

  24. Kongkanand A, Domínguez M, Kamat PV (2007) Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Lett 7:676–680

    Article  CAS  PubMed  Google Scholar 

  25. Jang SR, Vittal R, Kim KJ (2004) Incorporation of functionalized single-wall carbon nanotubes in dye-sensitized TiO2 solar cells. Langmuir 20:9807–9810

    Article  CAS  PubMed  Google Scholar 

  26. Mahalingam S, Abdullah H, Shaari S, Muchtar A (2016) Improved catalytic activity of Pt/rGO counter electrode in In2O3-based DSSC. Ionics 22:2487–2497

    Article  CAS  Google Scholar 

  27. Lu W, Liu Q, Sun Z, He J, Ezeolu C, Fang J (2008) Super crystal structures of octahedral C-In2O3 nanocrystals. J Am Chem Soc 130:6983–6991

    Article  CAS  PubMed  Google Scholar 

  28. Gan J, Lu X, Wu J, Xie S, Zhai T, Yu M, Zhang Z, Mao Y, Wang SCI, Shen Y, Tong Y (2013) Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci Rep 3:1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Berki P, Nemeth Z, Reti B, Berkesi O, Magrez A, Aroutiounian V, Forro L, Hernadi K (2013) Preparation and characterization of multiwalled carbon nanotube/In2O3 composites. Carbon 60:266–272

    Article  CAS  Google Scholar 

  30. Sönmezoğlu S, Çankaya G, Serin N (2012) Influence of annealing temperature on structural, morphological and optical properties of nanostructured TiO2 thin films. Mater Technol 27:251–256

    Article  CAS  Google Scholar 

  31. Mahalingam S, Abdullah H, Ashaari I, Shaari S, Muchtar A (2016) Influence of heat treatment process in In2O3-MWCNTs as photoanode in DSSCs. Ionics 22:711–719

    Article  CAS  Google Scholar 

  32. Kao MC, Chen HZ, Young SL, Kung CY, Lin CC (2009) The effects of the thickness of TiO2 films on the performance of dye-sensitized solar cells. Thin Solid Films 517:5096–5099

    Article  CAS  Google Scholar 

  33. Hamadanian M, Gravand A, Farangi M, Jabbari V (2011) The effect of the thickness of nanoporous TiO2 film on the nanocrystalline dye-sensitized solar cell, in: 5th symposium on advances in science and technology, Mashad, Iran, 12–17 May 2011

  34. Lu L, Li R, Fan K, Peng T (2010) Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles. Sol Energy 84:844–853

    Article  CAS  Google Scholar 

  35. Huang Y, Li D, Feng J, Li G, Zhang Q (2010) Transparent conductive tungsten-doped tin oxide thin films synthesized by sol-gel technique on quartz glass substrates. J Sol-Gel Sci Technol 54:276–281

    Article  CAS  Google Scholar 

  36. Jamal EMA, Sakthi Kumar D, Anantharaman MR (2011) On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34:251–259

    Article  Google Scholar 

  37. Bahr JL, Yang J, Kosynkin DV, Bronikowski MJ, Smalley RE, Tour JM (2001) Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J Am Chem Soc 123:6536–6542

    Article  CAS  PubMed  Google Scholar 

  38. Sinani VA, Gheith MK, Yaroslavov AA, Rakhnyanskaya AA, Sun K, Mamedov AA, Wicksted JP, Kotov NA (2005) Aqueous dispersions of single-wall and multiwall carbon nanotubes with designed amphiphilic polycations. J Am Chem Soc 127:3463–3472

    Article  CAS  PubMed  Google Scholar 

  39. Baxter JB, Ayedil ES (2006) Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol Energy Mater Sol Cells 90:607–622

    Article  CAS  Google Scholar 

  40. Hara K, Zhao ZG, Cui Y, Miyauchi M, Miyashita M, Mori S (2011) Nanocrystalline electrodes based on nanoporous-walled WO3 nanotubes for organic-dye-sensitized solar cells. Langmuir 27:12730–12736

    Article  CAS  PubMed  Google Scholar 

  41. Sariket D, Shyamal S, Hajra P, Mandal H, Bera A, Maity A, Bhattacharya C (2018) Improvement of photocatalytic activity of surfactant modified In2O3 towards environmental remediation. New J Chem 42:2467–2475

    Article  CAS  Google Scholar 

  42. Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  CAS  Google Scholar 

  43. Ariyanto NP, Abdullah H, Syarif J, Yuliarto B, Shaari S (2010) Fabrication of zinc oxide-based dye-sensitized solar cell by chemical bath deposition. Funct Mater Lett 3:303–307

    Article  CAS  Google Scholar 

  44. Zhang B, Zhang NN, Chen JF, Hou Y, Yang S, Guo JW, Yang XH, Zhong JH, Wang HF, Hu P, Zhao HJ (2013) Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms. Sci Rep 3:3109

    Article  PubMed  PubMed Central  Google Scholar 

  45. Nalwa HS (1996) Encyclopedia of nanoscience and nanotechnology. American Scientific, California

    Google Scholar 

  46. Hara K, Horiguchi T, Kinoshita T, Sayama K, Sugihara H, Arakawa H (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Sol Energy Mater Sol Cells 64:115–134

    Article  CAS  Google Scholar 

  47. Omar A, Abdullah H, Yarmo MA, Shaari S, Taha MR (2013) Morphological and electron transport studies in ZnO dye-sensitized solar cells incorporating multi-and single-walled carbon nanotubes. J Phys D Appl Phys 46:165503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savisha Mahalingam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahalingam, S., Abdullah, H., Amin, N. et al. Incident photon-to-current efficiency of thermally treated SWCNTs-based nanocomposite for dye-sensitized solar cell. Ionics 25, 747–761 (2019). https://doi.org/10.1007/s11581-018-2629-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2629-9

Keywords

Navigation