Skip to main content
Log in

Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, vertically aligned α-MnO2 nanosheets on carbon nanotubes are synthesized simply by a solution process and the electrochemical performance as host materials of magnesium ion is tested in aqueous solution. Cyclic voltammetry analysis confirms the enhanced electrochemical activity of carbon nanotube-supported samples. Moreover, carbon nanotubes skeleton could reduce the charge transfer resistant of the cathode materials, which is confirmed by electrochemical impedance spectroscopy. Furthermore, when tested as magnesium ion batteries cathodic electrode, the α-MnO2/carbon nanotube sample registers a prominent discharge capacity of 144.6 mAh g−1 at current density of 0.5 A g−1, which is higher than the discharge capacity of α-MnO2 (87.5 mAh g−1) due to the synergistic effect of insertion/deinsertion reaction and physical adsorption/desorption process. After the 1000th cycle, a remarkable discharge capacity of 48.3 mAh g−1 is collected for α-MnO2/carbon nanotube at current density of 10 A g−1, which is 85% of the original. It is found that the carbon skeleton not only improved the capacity but also enhanced the cycling performance of the α-MnO2 electrode significantly. Therefore, α-MnO2/carbon nanotube is a very promising candidate for further application in environmentally benign magnesium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Song JH, Noked M, Gilletter E, Duay J, Rubloff G (2015) Activation of a MnO2 cathode by water-stimulated Mg2+ insertion for a magnesium ion battery. Phys Chem Chem Phys 17:5256–5264

    Article  CAS  PubMed Central  Google Scholar 

  2. Jia ZJ, Wang J, Wang Y (2014) Electrochemical sodium ion storage hexacyanoferrate with a well-defined open framework for sodium ion batteries. RSC Adv 4:22768

    Article  CAS  Google Scholar 

  3. Kim RH, Kim JS, Kim HJ, Chang WS, Han DW, Lee SS, Doo SG (2014) Highly reduced VOx nanotube cathode materials with ultra-high capacity for magnesium ion batteries. J Mater Chem A 2:20636

    Article  CAS  Google Scholar 

  4. Kim JS, Chang WS, Kim RH, Kim DY, Han DW, Lee KH, Lee SS, Doo SG (2015) High-capacity nanostructured manganese dioxide cathode for rechargeable magnesium ion batteries. J Power Sources 273:210–215

    Article  CAS  Google Scholar 

  5. Cabello M, Alcantara R, Nacimiento F, Ortiz G, Lavela P, Tirado JL (2015) Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm 17:8728–8735

    Article  CAS  Google Scholar 

  6. Zhang RG, Yu XQ, Nam KW, Ling C, Arthur TS, Song W, Knapp AM, Ehrlich SN, Yang XQ, Matsui M (2012) α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem Commun 23:110–113

    Article  CAS  Google Scholar 

  7. Rasul S, Suzuki S, Yamaguchi S, Miyayama M (2012) High capacity positive electrodes for secondary Mg-ion batteries. Electrochim Acta 82:243–249

    Article  CAS  Google Scholar 

  8. Rasul S, Suzuki S, Yamaguchi S, Miyayama M (2012) Synthesis and electrochemical behavior of hollandite MnO2/acetylene black composite cathode for secondary Mg-ion batteries. Solid State Ionics 225:542–546

    Article  CAS  Google Scholar 

  9. Bruce PG, Krok F, Nowinski J, Gibson VC, Tavakkoli K (1991) Chemical intercalation of magnesium into solid hosts. J Mater Chem 1(4):705–706

    Article  CAS  Google Scholar 

  10. Li L, Hu ZA, An N, Yang YY, Li ZM, Wu HY (2014) Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability. J Phys Chem C 118:22865–22872

    Article  CAS  Google Scholar 

  11. Xu CJ, Li BH, Du HD, Kang FY (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem 124:957–959

    Article  Google Scholar 

  12. Zou GQ, Chen J, Zhang Y, Wang C, Huang ZD, Li SM, Liao HX, Wang JF, Ji XB (2016) Carbon-coated rutile titanium dioxide derived from titanium-metal organic framework with enhanced sodium storage behavior. J Power Sources 325:25–34

    Article  CAS  Google Scholar 

  13. He D, Wu DN, Gao J, Wu XM, Zeng XQ, Ding WJ (2015) Flower-like CoS with nanostructures as a new cathode-active material for rechargeable magnesium batteries. J Power Sources 294:643–649

    Article  CAS  Google Scholar 

  14. Jia ZJ, Wang J, Wang Y, Li BY, Wang BG, Qi T, Wang X (2016) Interfacial synthesis of δ-MnO2 nano-sheets with a large surface area and their application in electrochemical capacitors. Journal of materials science and techonolgy 32(2):147–152

    Article  Google Scholar 

  15. Song XQ, Duffort V, Mehdi BL, Browning ND, Zazar LD (2016) Investigation of the mechanism of Mg insertion in birnessite in nonaqueous and aqueous rechargeable Mg-ion batteries. Chem Mater 28:534–542

    Article  Google Scholar 

  16. Brezesinski T, Wang J, Tolbert SH, Dunn B (2010) Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat Mater 9:146–151

    Article  CAS  PubMed Central  Google Scholar 

  17. Kim HS, Cook JB, Lin H, Ko JS, Tolbert SH, Ozolins V, Dunn B (2017) Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x. Nat Mater 17:454–462

    Article  Google Scholar 

  18. Wang XW, Wang FX, Wang LY, Li MX, Wang YF, Chen BW, Zhu YS, Fu LJ, Zha LS, Zhang LX, Wu YP, Huang W (2016) An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv Mater 28:4904–4911

    Article  CAS  PubMed Central  Google Scholar 

  19. Wang FX, Yu F, Wang XW, Chang Z, Fu LJ, Zhu YS, Wen ZB, Wu YP, Huang W (2016) Aqueous rechargeable zinc/aluminum ion battery with good cycling performance. ACS Appl Mater Interfaces 8:9022–9029

    Article  CAS  Google Scholar 

  20. Ling C, Zhang RG (2017) Manganese dioxide as rechargeable magnesium battery cathode. Front Energy Res 5:30

    Article  Google Scholar 

  21. Ling C, Mizuno F (2013) Phase stability of post-spinel compound AMn2O4 (A = Li, Na, or Mg) and its application as a rechargeable battery cathode. Chem Mater 25:3062–3071

    Article  CAS  Google Scholar 

  22. Ling C, Zhang RG, Mizuno F (2016) Quantitatively predict the potential of MnO2 polymorphs as magnesium battery cathodes. ACS Appl Mater Interfaces 8:4508–4515

    Article  CAS  PubMed Central  Google Scholar 

  23. Nam KW, Kim S, Lee S, Salama M, Shterenberg I, Gofer Y, Kim JS, Yang E, Park CS, Kim JS, Lee SS, Chang WS, Doo SG, Jo YN, Jung Y, Aurbach D, Choi JW (2015) The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett 15:4071–4079

    Article  CAS  PubMed Central  Google Scholar 

  24. Ling C, Soto K (2017) Thermodynamic origin of irreversible magnesium trapping in Chevrel phase Mo6S8: importance of magnesium and vacancy ordering. Chem Mater 29:3731–3739

    Article  CAS  Google Scholar 

  25. Arthur TS, Zhang RG, Ling C, Glans PA, Fan XD, Guo JH, Mizuno F (2014) Understanding the electrochemical mechanism of K-α MnO2 for magnesium battery cathodes. ACS Appl Mater Interfaces 6:7004–7008

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by Key Research Program of Frontier Sciences of Chinese Academy of Sciences (Grant No. QYZDJ-SSW-JSC021), Beijing Natural Science Foundation (2184127), Chinese National Programs for High Technology Research and Development (2014AA06A513), as well as by the 973 Program (Grant No. 2015CB251303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Tao Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Hao, J., Liu, L. et al. Vertically aligned α-MnO2 nanosheets on carbon nanotubes as cathodic materials for aqueous rechargeable magnesium ion battery. Ionics 24, 3483–3491 (2018). https://doi.org/10.1007/s11581-018-2499-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2499-1

Keywords

Navigation