Skip to main content
Log in

Performance of La0.5Sr0.5Fe0.9Mo0.1O3 − δ–Sm0.2Ce0.8O2 − δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The La0.5Sr0.5Fe0.9Mo0.1O3 − δx wt.% SDC (LSFMo-xSDC, x = 0, 20, and 30) samples were evaluated as potential cathodes for solid oxide fuel cells (SOFCs) based on both La0.9Sr0.1Ga0.8Mg0.2O3 − δ (LSGM) and Sm0.2Ce0.8O2 − δ (SDC) electrolytes. The LSFMo cathode is chemically compatible with the LSGM and SDC electrolytes with temperature up to 1000 °C. Through the comparison of the polarization resistances (Rp) of the LSFMo cathode on LSGM and SDC electrolytes, only a small difference of ~ 13–15% in the Rp was obtained. To further improve the electrochemical performance of the LSFMo cathode, 20 and 30 wt.% SDC were introduced into the LSFMo cathode. The LSGM/SDC-supported single cell with LSFMo-20SDC composite cathode was found to show the optimal performance and excellent power cycle and long-time stability. In addition, the electrical conductivity and thermal expansion coefficient (TEC) for the LSFMo-20SDC cathode were also detected and evaluated. Our results show that the LSFMo-20SDC is a very promising candidate for use in the cathode of SOFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee SW, Tseng CJ, Chang JK, Lee KR, Chen CT, Hung IM, Lee SL, Lin JC (2014) Synthesis and characterization of Ba0.6Sr0.4Ce0.8−xZrxY0.2O3−δ proton–conducting oxides for use as fuel cell electrolyte. J Alloys Comp 586:S506–S510. https://doi.org/10.1016/j.jallcom.2013.01.101

    Article  CAS  Google Scholar 

  2. Moon H, Kim SD, Hyun SH, Kim HS (2009) Development of IT–SOFC unit cells with anode–supported thin electrolytes via tape casting and co–firing. Int J Hydrog Energy 33:1758–1768

    Article  CAS  Google Scholar 

  3. Kim JW, Virkar AV, Fung KZ, Mehta K, Singhal SC (1999) Polarization effects in intermediate temperature, anode–supported solid oxide fuel cells. J Electrochem Soc 146(1):69–78. https://doi.org/10.1149/1.1391566

    Article  CAS  Google Scholar 

  4. Jiang Y, Virkar AV, Zhao F (2001) The effect of testing geometry on the measurement of cell performance in anode–supported solid oxide fuel cells: the effect of cathode area. J Electrochem Soc 148(10):A1091–A1099. https://doi.org/10.1149/1.1396650

    Article  CAS  Google Scholar 

  5. Brett DJL, Atkinson A, Brandon NP, Skinner SJ (2008) Intermediate temperature solid oxide fuel cells. Chem Soc Rev 37(8):1568–1578. https://doi.org/10.1039/b612060c

    Article  CAS  PubMed  Google Scholar 

  6. Leng YJ, Chan SH, Liu QL (2008) Development of LSCF–GDC composite cathodes for low–temperature solid oxide fuel cells with thin film GDC electrolyte. Int J Hydrog Energy 33(14):3808–3817. https://doi.org/10.1016/j.ijhydene.2008.04.034

    Article  CAS  Google Scholar 

  7. Lü SQ, Yu B, Meng XW, Zhang YJ, Ji Y, Fu CW, Yang LL, Li XY, Sui YR, Yang JH (2014) Performance of double–perovskite YBa0.5Sr0.5Co1.4Cu0.6O5–δ as cathode material for intermediate–temperature solid oxide fuel cells. Ceram Int 40(9):14919–14925. https://doi.org/10.1016/j.ceramint.2014.06.088

    Article  CAS  Google Scholar 

  8. Huang C, Chen DJ, Lin Y, Ran R, Shao ZP (2010) Evaluation of Ba0.6Sr0.4Co0.9Nb0.1O3–δ mixed conductor as a cathode for intermediate–temperature oxygen–ionic solid–oxide fuel cells. J Power Sources 195(16):5176–5184. https://doi.org/10.1016/j.jpowsour.2010.02.080

    Article  CAS  Google Scholar 

  9. Zhang LL, Yao GB, Song ZY, Niu BB, He TM (2016) Effects of Pr–deficiency on thermal expansion and electrochemical properties in Pr1–xBaCo2O5+δ cathodes for IT–SOFCs. Electrochim Acta 212:522–534. https://doi.org/10.1016/j.electacta.2016.07.014

    Article  CAS  Google Scholar 

  10. Kim JH, Kim Y, Connor PA, Irvine JTS, Bae J, Zhou W (2009) Structure, thermal and electrochemical properties of layered perovskite SmBaCo2O5+d, a potential cathode material for intermediate–temperature solid oxide fuel cells. J Power Sources 194(2):704–711. https://doi.org/10.1016/j.jpowsour.2009.06.024

    Article  CAS  Google Scholar 

  11. Bouwmeester HJM (2003) Dense ceramic membranes for methane conversion. Catal Today 82(1-4):141–150. https://doi.org/10.1016/S0920-5861(03)00222-0

    Article  CAS  Google Scholar 

  12. Xiao GL, Liu Q, Wang SW, Komvokis VG, Amiridis MD, Heyden A, Ma SG, Chen FL (2012) Synthesis and characterization of Mo–doped SrFeO3 as cathode materials for solid oxide fuel cells. J Power Sources 202:63–69. https://doi.org/10.1016/j.jpowsour.2011.11.021

    Article  CAS  Google Scholar 

  13. Fernández-Ropero AJ, Porras-Vázquez JM, Cabeza A, Slater PR, Marrero-López D, Losilla ER (2014) High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs. J Power Sources 249:405–413. https://doi.org/10.1016/j.jpowsour.2013.10.118

    Article  CAS  Google Scholar 

  14. Yang GM, Su C, Chen YB, Dong FF, Tade MO, Shao ZP (2015) Cobalt–free SrFe0.9Ti0.1O3–δ as a high–performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. J Eur Ceram Soc 35(9):2531–2539. https://doi.org/10.1016/j.jeurceramsoc.2015.03.005

    Article  CAS  Google Scholar 

  15. Xiao J, Han D, Yu FY, Zhang L, Liu J, Zhan ZL, Zhang YJ, Dong P (2016) Characterization of symmetrical SrFe0.75Mo0.25O3−δ electrodes in direct carbon solid oxide fuel cells. J Alloys Compd 688:935–945

    Google Scholar 

  16. Yu T, Mao XB, Ma GL (2014) A novel cobalt–free perovskite La0.6Sr0.4Fe0.9Mo0.1O3–δ cathode for intermediate–temperature solid oxide fuel cells. Ceram Int 40(8):13747–13751. https://doi.org/10.1016/j.ceramint.2014.05.050

    Article  CAS  Google Scholar 

  17. Huang SG, Wang GJ, Sun XH, Lei CM, Li T, Wang CC (2012) Cobalt–free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3–δ as a cathode material for intermediate temperature solid oxide fuel cells. J Alloys Compd 543:26–30. https://doi.org/10.1016/j.jallcom.2012.07.115

    Article  CAS  Google Scholar 

  18. Dong FF, Ni M, He W, Chen YB, Yang GM, Chen DJ, Shao ZP (2016) An efficient electrocatalyst as cathode material for solid oxide fuel cells: BaFe0.95Sn0.05O3−δ. J Power Sources 326:459–465. https://doi.org/10.1016/j.jpowsour.2016.07.023

    Article  CAS  Google Scholar 

  19. Dong FF, Chen DJ, Chen YB, Zhao Q, Shao ZP (2012) La–doped BaFeO3−δ perovskite as a cobalt–free oxygen reduction electrode for solid oxide fuel cells with oxygen–ion conducting electrolyte. J Mater Chem 22(30):15071–15079. https://doi.org/10.1039/c2jm31711g

    Article  CAS  Google Scholar 

  20. Mao XB, Yu T, Ma GL (2015) Performance of cobalt–free double–perovskite NdBaFe2–xMnxO5+δ cathode materials for proton–conducting IT–SOFC. J Alloys Compd 637:286–290. https://doi.org/10.1016/j.jallcom.2015.02.001

    Article  CAS  Google Scholar 

  21. Wang SL, Feng Y, Wang DS (2014) Electrochemical comparison of cobalt–free La0.5Sr0.5Fe0.9Mo0.1O3–δ based cathode materials for intermediate–temperature solid oxide fuel cells. Ceram Int 40(4):6359–6363. https://doi.org/10.1016/j.ceramint.2013.10.133

    Article  CAS  Google Scholar 

  22. Cong LG, He TM, Ji Y, Guan PF, Huang YL, Su WH (2003) Synthesis and characterization of IT–electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J Alloys Compd 348(1-2):325–331. https://doi.org/10.1016/S0925-8388(02)00859-9

    Article  CAS  Google Scholar 

  23. Ding ZL, Yang ZJ, Zhao DM, Deng XL, Ma GL (2013) A cobalt–free perovskite–type La0.6Sr0.4Fe0.9Cr0.1O3–δ cathode for proton–conducting intermediate temperature solid oxide fuel cells. J Alloys Compd 550:204–208. https://doi.org/10.1016/j.jallcom.2012.09.107

    Article  CAS  Google Scholar 

  24. Li L, Jin FJ, Shen Y, He TM (2015) Cobalt–free double perovskite cathode GdBaFeNiO5+δ and electrochemical performance improvement by Ce0.8Sm0.2O1.9 impregnation for intermediate–temperature solid oxide fuel cells. Electrochim Acta 182:682–692. https://doi.org/10.1016/j.electacta.2015.09.146

    Article  CAS  Google Scholar 

  25. Lu J, Yin YM, Ma ZF (2013) Preparation and characterization of new cobalt–free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3–δ for IT–SOFC. Int J Hydrog Energy 38(25):10527–10533. https://doi.org/10.1016/j.ijhydene.2013.05.164

    Article  CAS  Google Scholar 

  26. Zhou Q, Xu L, Guo Y, Jia D, Li Y, Wei WCJ (2012) La0.6Sr0.4Fe0.8Cu0.2O3–δ perovskite oxide as cathode for IT–SOFC. Int J Hydrog Energy 37(16):11963–11968. https://doi.org/10.1016/j.ijhydene.2012.05.114

    Article  CAS  Google Scholar 

  27. Tai LW, Nasrallah M, Anderson H, Sparlin DM, Sehlin SR (1995) Structure and electrical properties of La1–xSrxCo1–yFeyO3. II: the system La1–xSrxCo0.2Fe0.8O3. Solid State Ionics 76(3-4):273–283. https://doi.org/10.1016/0167-2738(94)00245-N

    Article  CAS  Google Scholar 

  28. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) Electrochemical properties of mixed conducting perovskites La[sub 1−x]M[sub x]Co[sub 1−y]Fe[sub y]O[sub 3−δ] (M = Sr, Ba, Ca). J Electrochem Soc 143(9):2722–2729. https://doi.org/10.1149/1.1837098

    Article  CAS  Google Scholar 

  29. Ullmann H, Trofimenko N, Tietz F, Stöver D, Ahmad-Khanlou A (2000) Correlation between thermal expansion and oxide ion transport in mixed conducting perovskite–type oxides for SOFC cathodes. Solid State Ionics 138(1-2):79–90. https://doi.org/10.1016/S0167-2738(00)00770-0

    Article  CAS  Google Scholar 

  30. Pikalova EY, Maragou VI, Demina AN, Demin AK, Tsiakaras PE (2008) The effect of co–dopant addition on the properties of Ln0.2Ce0.8O2−δ (Ln = Gd, Sm, La) solid–state electrolyte. J Power Sources 181(2):199–206. https://doi.org/10.1016/j.jpowsour.2008.02.003

    Article  CAS  Google Scholar 

  31. Nagai T, Ito W, Sakon T (2008) Change in the thermal expansion of a perovskite–type mixed conductor upon sample density. J Am Ceram Soc 91:303–307

    Article  CAS  Google Scholar 

  32. Li M, Wang Y, Wang YL, Chen FL, Xia CR (2014) Bismuth doped lanthanum ferrite perovskites as novel cathodes for intermediate–temperature solid oxide fuel cells. Appl Mater Interfaces 6(14):11286–11294. https://doi.org/10.1021/am5017045

    Article  CAS  Google Scholar 

  33. Kong X, Ding X (2011) Novel layered perovskite SmBaCu2O5+δ as a potential cathode for intermediate temperature solid oxide fuel cells. Int J Hydrog Energy 36(24):15715–15721. https://doi.org/10.1016/j.ijhydene.2011.09.035

    Article  CAS  Google Scholar 

  34. Zhou QJ, Zhang LL, He TM (2010) Cobalt–free cathode material SrFe0.9Nb0.1O3–δ for intermediate–temperature solid oxide fuel cells. Electrochem Commun 12(2):285–287. https://doi.org/10.1016/j.elecom.2009.12.016

    Article  CAS  Google Scholar 

  35. Steele BCH (1996) Survey of materials selection for ceramic fuel cells II. Cathode and anodes. Solid State Ionics 86–88:1223–1234

    Article  Google Scholar 

  36. Ling YH, Zhang XZ, Wang ZB, Wang SL, Zhao L, Liu XQ, Lin B (2013) Potentiality of cobalt–free perovskite Ba0.5Sr0.5Fe0.9Mo0.1O3–δ as a single–phase cathode for intermediate–to–low–temperature solid oxide fuel cells. Int J Hydrog Energy 38(33):14323–14328. https://doi.org/10.1016/j.ijhydene.2013.08.089

    Article  CAS  Google Scholar 

  37. Shao Z, Haile SM (2004) A high–performance cathode for the next generation of solid–oxide fuel cells. Nature 431(7005):170–173. https://doi.org/10.1038/nature02863

    Article  CAS  PubMed  Google Scholar 

  38. Escudero MJ, Aguadero A, Alonso JA, Daza L (2007) A kinetic study of oxygen reduction reaction on La2NiO4 cathodes by means of impedance spectroscopy. J Electroanal Chem 611(1-2):107–116. https://doi.org/10.1016/j.jelechem.2007.08.006

    Article  CAS  Google Scholar 

  39. Chen DJ, Ran R, Zhang K, Wang J, Shao ZP (2009) Intermediate–temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium–doped ceria electrolyte. J Power Sources 188(1):96–105. https://doi.org/10.1016/j.jpowsour.2008.11.045

    Article  CAS  Google Scholar 

  40. Pang SL, Jiang XN, Li XN, Wang Q, Su ZX (2012) Characterization of Ba–deficient PrBa1−xCo2O5+δ as cathode material for intermediate temperature solid oxide fuel cells. J Power Sources 204:53–59. https://doi.org/10.1016/j.jpowsour.2012.01.034

    Article  CAS  Google Scholar 

  41. Adler SB, Lane JA, Steele BCH (1996) Electrode kinetics of porous mixed–conducting oxygen electrodes. J Electrochem Soc 143(11):3554–3564. https://doi.org/10.1149/1.1837252

    Article  CAS  Google Scholar 

  42. Baumann FS, Fleig J, Habermeier HU, Maier J (2006) Ba0.5Sr0.5Co0.8Fe0.2O3−δ thin film microelectrodes investigated by impedance spectroscopy. Solid State Ionics 177(35-36):3187–3191. https://doi.org/10.1016/j.ssi.2006.07.057

    Article  CAS  Google Scholar 

  43. Lee SJ, Muralidharan P, Jo SH, Kim DK (2010) Composite cathode for IT–SOFC: Sr–doped lanthanum cuprate and Gd–doped ceria. Electrochem Commun 12(6):808–811. https://doi.org/10.1016/j.elecom.2010.03.039

    Article  CAS  Google Scholar 

  44. Zhu C, Liu X, Xu D, Wang D, Yan D, Pei L, Lü T, Su W (2008) Electrochemical performance of Pr0.7Sr0.3Co0.9Cu0.1O3−δ–Ce0.8Sm0.2O1.9 composite cathodes in intermediate–temperature solid oxide fuel cells. J Power Sources 185(1):212–216. https://doi.org/10.1016/j.jpowsour.2008.06.027

    Article  CAS  Google Scholar 

  45. Gu H, Chen H, Gao L, Guo L (2009) Electrochemical properties of LaBaCo2O5+δ–Sm0.2Ce0.8O1.9 composite cathodes for intermediate–temperature solid oxide fuel cells. Electrochim Acta 54(27):7094–7098. https://doi.org/10.1016/j.electacta.2009.07.040

    Article  CAS  Google Scholar 

  46. Zhou QJ, He TM, He Q, Ji Y (2009) Electrochemical performances of LaBaCuFeO5+x and LaBaCuCoO5+x as potential cathode materials for intermediate–temperature solid oxide fuel cells. Electrochem Commun 11(1):80–83. https://doi.org/10.1016/j.elecom.2008.10.035

    Article  CAS  Google Scholar 

  47. Yang ZJ, Wang WB, Xiao J, Zhang HM, Zhang F, Ma GL, Zhou ZF (2012) A novel cobalt–free Ba0.5Sr0.5Fe0.9Mo0.1O3−δ–BaZr0.1Ce0.7Y0.2O3−α composite cathode for solid oxide fuel cells. J Power Sources 204:89–93. https://doi.org/10.1016/j.jpowsour.2012.01.044

    Article  CAS  Google Scholar 

  48. Ling YH, Zhao L, Lin B, Dong YC, Zhang XZ, Meng GY, Liu XQ (2010) Investigation of cobalt–free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3–δ for intermediate temperature solid oxide fuel cell. Int J Hydrog Energy 35(13):6905–6910. https://doi.org/10.1016/j.ijhydene.2010.04.021

    Article  CAS  Google Scholar 

  49. Pang SL, Wang WZ, Chen T, Shen XQ, Wang YG, Xu KJ, Xi XM (2016) Systematic evaluation of cobalt–free Ln0.5Sr0.5Fe0.8Cu0.2O3–δ (Ln = La, Pr, and Nd) as cathode materials for intermediate–temperature solid oxide fuel cells. J Power Sources 326:176–181. https://doi.org/10.1016/j.jpowsour.2016.06.134

    Article  CAS  Google Scholar 

  50. Murray EP, Sever MJ, Barnett SA (2002) Electrochemical performance of (La,Sr)(Co,Fe)O3–(Ce,Gd)O3 composite cathodes. Solid State Ionics 148(1-2):27–34. https://doi.org/10.1016/S0167-2738(02)00102-9

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11504320 and 21403101), by the Foundation of Education Department of Liaoning Province (Nos. L2012135, L2016013), by the Foundation of the Science and Technology Department of Liaoning Province (Nos. 2013020151, 201602475, and 20170520381), and by the Program for the Development of Science and Technology of Fushun City (Nos. 20153310 and 20141117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leilei Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhang, L., Wang, C. et al. Performance of La0.5Sr0.5Fe0.9Mo0.1O3 − δ–Sm0.2Ce0.8O2 − δ composite cathode for CeO2- and LaGaO3-based solid oxide fuel cells. Ionics 24, 2717–2728 (2018). https://doi.org/10.1007/s11581-017-2424-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2424-z

Keywords

Navigation