Skip to main content
Log in

Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, a simple and controllable one-step electrodeposition method was used to fabricate a novel reduced graphene oxide-gold nanoparticles (RGO-GNPs) nanocomposite film onto the surface of bare glass carbon electrode (GCE), and then, Nafion was modified onto the film to prepare an electrochemical sensor for simultaneous detection of trace Cd(II) and Pb(II) in square-wave anodic stripping voltammetry (SWASV) with situ plating bismuth film. The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), cyclic voltammetry (CV), and SWASV. It was found that the formed RGO-GNPs nanocomposite film on the GCE surface could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the Nafion film could effectively increase the adhesion and stability of RGO-GNPs nanocomposite layer, enhance cation-exchange capacity, and prevent the macromolecule in real samples absorbing on the surface of electrode. The Bi/Nafion/RGO-GNPs/GCE demonstrated a highly linear behavior in the simultaneous detection of Cd(II) and Pb(II) in the concentration range of 1.0 to 90 μg/L with detection limits of 0.08 and 0.12 μg/L (S/N = 3), respectively. Finally, The developed electrode was further applied to the determination of Cd(II) and Pb(II) in soil samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions—a review. Bioresource Technol 99:6017–6027. doi:10.1016/j.biortech.2007.11.064

    Article  CAS  Google Scholar 

  2. Ouyang R, Zhu Z, Tatum CE et al (2011) Simultaneous stripping detection of Zn (II), Cd (II) and Pb (II) using a bimetallic Hg–Bi/single-walled carbon nanotubes composite electrode. J Electroanal Chem 656:78–84. doi:10.1016/j.jelechem.2011.01.006

    Article  CAS  Google Scholar 

  3. Wanekaya AK (2011) Applications of nanoscale carbon-based materials in heavy metal sensing and detection. Analyst 136:4383–4391. doi:10.1039/C1AN15574A

    Article  CAS  Google Scholar 

  4. Choi SM, Kim DM, Jung OS et al (2015) A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. Anal Chim Acta 892:77–84. doi:10.1016/j.aca.2015.08.037

    Article  CAS  Google Scholar 

  5. Zhao G, Si Y, Wang H et al (2016) A portable electrochemical detection system based on graphene/ionic liquid modified screen-printed electrode for the detection of cadmium in soil by square wave anodic stripping voltammetry. Int J Electrochem Sci 11:54–64

    CAS  Google Scholar 

  6. Gumpu MB, Sethuraman S, Krishnan UM et al (2015) A review on detection of heavy metal ions in water—an electrochemical approach. Sensors Actuators B Chem 213:515–533. doi:10.1016/j.snb.2015.02.122

    Article  CAS  Google Scholar 

  7. Pohl P (2009) Determination of metal content in honey by atomic absorption and emission spectrometries. Trend Anal Chem 28:117–128. doi:10.1016/j.trac.2008.09.015

    Article  CAS  Google Scholar 

  8. Ioannidou MD, Zachariadis GA, Anthemidis AN et al (2005) Direct determination of toxic trace metals in honey and sugars using inductively coupled plasma atomic emission spectrometry. Talanta 65:92–97. doi:10.1016/j.talanta.2004.05.018

    CAS  Google Scholar 

  9. Chamjangali MA, Kouhestani H, Masdarolomoor F et al (2015) A voltammetric sensor based on the glassy carbon electrode modified with multi-walled carbon nanotube/poly (pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sensors Actuators B Chem 216:384–393. doi:10.1016/j.snb.2015.04.058

    Article  CAS  Google Scholar 

  10. Keawkim K, Chuanuwatanakul S, Chailapakul O et al (2013) Determination of lead and cadmium in rice samples by sequential injection/anodic stripping voltammetry using a bismuth film/crown ether/Nafion modified screen-printed carbon electrode. Food Control 31(1):14–21. doi:10.1016/j.foodcont.2012.09.025

    Article  CAS  Google Scholar 

  11. Wang J, Lu J, Hocevar SB et al (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218–3222. doi:10.1021/ac000108x

    Article  CAS  Google Scholar 

  12. Liu J, Yuan X, Gao Q et al (2012) Ultrasensitive DNA detection based on coulometric measurement of enzymatic silver deposition on gold nanoparticle-modified screen-printed carbon electrode. Sensors Actuators B Chem 162:384–390. doi:10.1016/j.snb.2011.12.109

    Article  CAS  Google Scholar 

  13. Wang X, Falk M, Ortiz R et al (2012) Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron 31:219–225. doi:10.1016/j.bios.2011.10.020

    Article  Google Scholar 

  14. Zhu L, Xu L, Tan L et al (2013) Direct electrochemistry of cholesterol oxidase immobilized on gold nanoparticles-decorated multiwalled carbon nanotubes and cholesterol sensing. Talanta 106:192–199. doi:10.1016/j.talanta.2012.12.036

    Article  CAS  Google Scholar 

  15. Kefala G, Economou A, Voulgaropoulos A et al (2003) A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 61:603–610. doi:10.1016/S0039-9140(03)00350-3

    Article  CAS  Google Scholar 

  16. Hwang GH, Han WK, Park JS et al (2008) Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta 76:301–308. doi:10.1016/j.talanta.2008.02.039

    Article  CAS  Google Scholar 

  17. Wang N, Dong X (2008) Stripping voltammetric determination of Pb (II) and Cd (II) based on the multiwalled carbon nanotubes-Nafion-bismuth modified glassy carbon electrodes. Anal Lett 41:1267–1278. doi:10.1080/00032710802052817

    Article  CAS  Google Scholar 

  18. Liu G, Lin Y, Tu Y et al (2005) Ultrasensitive voltammetric detection of trace heavy metal ions using carbon nanotube nanoelectrode array. Analyst 130:1098–1101. doi:10.1039/B419447K

    Article  CAS  Google Scholar 

  19. Wu K, Hu S, Fei J et al (2003) Mercury-free simultaneous determination of cadmium and lead at a glassy carbon electrode modified with multi-wall carbon nanotubes. Anal Chim Acta 489:215–221. doi:10.1016/S0003-2670(03)00718-9

    Article  CAS  Google Scholar 

  20. Wang J (2005) Stripping analysis at bismuth electrodes: a review. Electroanal 17:1341–1346. doi:10.1002/elan.200403270

    Article  CAS  Google Scholar 

  21. Mafa PJ, Idris AO, Mabuba N et al (2016) Electrochemical co-detection of As (III), Hg (II) and Pb (II) on a bismuth modified exfoliated graphite electrode. Talanta 153:99–106. doi:10.1016/j.talanta.2016.03.003

    Article  CAS  Google Scholar 

  22. Zhao G, Wang H, Liu G (2016) Electrochemical determination of trace cadmium in soil by a bismuth film/graphene-β-cyclodextrin-Nafion composite modified electrode. Int J Electrochem Sci 11:1840–1851

    CAS  Google Scholar 

  23. Ramnani P, Saucedo NM, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98. doi:10.1016/j.chemosphere.2015.04.063

    Article  CAS  Google Scholar 

  24. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. doi:10.1021/ac900136z

    Article  CAS  Google Scholar 

  25. Chen L, Tang Y, Wang K et al (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Commun 13:133–137. doi:10.1016/j.elecom.2010.11.033

    Article  CAS  Google Scholar 

  26. Sanghavi BJ, Kalambate PK, Karna SP et al (2014) Voltammetric determination of sumatriptan based on a graphene/gold nanoparticles/Nafion composite modified glassy carbon electrode. Talanta 120:1–9. doi:10.1016/j.talanta.2013.11.077

    Article  CAS  Google Scholar 

  27. Legeai S, Vittori O (2006) A Cu/Nafion/Bi electrode for on-site monitoring of trace heavy metals in natural waters using anodic stripping voltammetry: an alternative to mercury-based electrodes. Anal Chim Acta 560:184–190. doi:10.1016/j.aca.2005.12.010

    Article  CAS  Google Scholar 

  28. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. Society. J Am Chem Soc 80:1339–1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  29. Kovtyukhova NI, Ollivier PJ, Martin BR et al (1999) Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem Mater 11:771–778. doi:10.1021/cm981085u

    Article  CAS  Google Scholar 

  30. Kadara RO, Tothill IE (2008) Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (II) and cadmium (II) in soil and water samples. Anal Chim Acta 623:76–81. doi:10.1016/j.aca.2008.06.010

    Article  CAS  Google Scholar 

  31. Cooper J, Bolbot JA, Saini S et al (2007) Electrochemical method for the rapid on site screening of cadmium and lead in soil and water samples. Water Air Soil Pollut 179:183–195. doi:10.1007/s11270-006-9223-x

    Article  CAS  Google Scholar 

  32. Chen P, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965. doi:10.1021/ac960492r

    Article  CAS  Google Scholar 

  33. Wang DW, Gentle IR, Lu GQM (2010) Enhanced electrochemical sensitivity of PtRh electrodes coated with nitrogen-doped graphene. Electrochem Commun 12:1423–1427. doi:10.1016/j.elecom.2010.07.037

    Article  CAS  Google Scholar 

  34. Kampouris DK, Banks CE (2010) Exploring the physicoelectrochemical properties of graphene. Chem Commun 46:8986–8988. doi:10.1039/C0CC02860F

    Article  CAS  Google Scholar 

  35. Zhou YG, Chen JJ, Wang F et al (2010) A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem Commun 46:5951–5953. doi:10.1039/C0CC00394H

    Article  CAS  Google Scholar 

  36. Fu C, Kuang Y, Huang Z et al (2010) Electrochemical co-reduction synthesis of graphene/Au nanocomposites in ionic liquid and their electrochemical activity. Chem Phys Lett 499:250–253. doi:10.1016/j.cplett.2010.09.055

    Article  CAS  Google Scholar 

  37. Crowley K, Cassidy J (2002) Trace analysis of lead at a Nafion-modified electrode using square-wave anodic stripping voltammetry. Electroanal 14:1077–1082. doi:10.1002/1521-4109(200208)14:15/163.0.CO;2-3

    Article  CAS  Google Scholar 

  38. Li D, Jia J, Wang J (2010) Simultaneous determination of Cd (II) and Pb (II) by differential pulse anodic stripping voltammetry based on graphite nanofibers–Nafion composite modified bismuth film electrode. Talanta 83:332–336. doi:10.1016/j.talanta.2010.09.024

    Article  CAS  Google Scholar 

  39. Wang Z, Wang H, Zhang Z et al (2014) Sensitive electrochemical determination of trace cadmium on a stannum film/poly (p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochim Acta 120:140–146. doi:10.1016/j.electacta.2013.12.068

    Article  CAS  Google Scholar 

  40. Rosolina SM, Chambers JQ, Lee CW et al (2015) Direct determination of cadmium and lead in pharmaceutical ingredients using anodic stripping voltammetry in aqueous and DMSO/water solutions. Anal Chim Acta 893:25–33. doi:10.1016/j.aca.2015.07.010

    Article  CAS  Google Scholar 

  41. Serrano N, González-Calabuig A, del Valle M (2015) Crown ether-modified electrodes for the simultaneous stripping voltammetric determination of Cd (II), Pb (II) and Cu (II. Talanta 138:130–137. doi:10.1016/j.talanta.2015.01.044

    Article  CAS  Google Scholar 

  42. Cerovac S, Guzsvány V, Kónya Z et al (2015) Trace level voltammetric determination of lead and cadmium in sediment pore water by a bismuth-oxychloride particle-multiwalled carbon nanotube composite modified glassy carbon electrode. Talanta 134:640–649. doi:10.1016/j.talanta.2014.12.002

    Article  CAS  Google Scholar 

  43. Zhou W, Li C, Sun C et al (2016) Simultaneously determination of trace Cd 2+ and Pb 2+ based on l-cysteine/graphene modified glassy carbon electrode. Food Chem 192:351–357. doi:10.1016/j.foodchem.2015.07.042

    Article  CAS  Google Scholar 

  44. Wu Y, Li NB, Luo HQ (2008) Simultaneous measurement of Pb, Cd and Zn using differential pulse anodic stripping voltammetry at a bismuth/poly (p-aminobenzene sulfonic acid) film electrode. Sensors Actuators B Chem 133:677–681. doi:10.1016/j.snb.2008.04.001

    Article  CAS  Google Scholar 

  45. Hočevar SB, Švancara I, Vytřas K et al (2005) Novel electrode for electrochemical stripping analysis based on carbon paste modified with bismuth powder. Electrochim Acta 51:706–710. doi:10.1016/j.electacta.2005.05.023

    Article  Google Scholar 

  46. Dimovasilis PA, Prodromidis MI (2010) Bismuth-dispersed xerogel-based composite films for trace Pb (II) and Cd (II) voltammetric determination. Anal Chim Acta 769:49–55. doi:10.1016/j.aca.2013.01.040

    Article  Google Scholar 

  47. Injang U, Noyrod P, Siangproh W et al (2010) Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal Chim Acta 668:54–60. doi:10.1016/j.aca.2010.01.018

    Article  CAS  Google Scholar 

  48. Wang Z, Wang H, Zhang Z et al (2014) Electrochemical determination of lead and cadmium in rice by a disposable bismuth/electrochemically reduced graphene/ionic liquid composite modified screen-printed electrode. Sensors Actuators B Chem 199:7–14. doi:10.1016/j.snb.2014.03.092

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the General Program of National Natural Science Foundation of China (No. 31671578), National High Technology Research and Development Program of China (No. 2013AA102302), Fundamental Research Funds for the Central Universities (No. 2016 XD001) and Shandong Provincial Natural Science Foundation of China (No. ZR2015CM016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Wang, H., Liu, G. et al. Simultaneous determination of trace Cd(II) and Pb(II) based on Bi/Nafion/reduced graphene oxide-gold nanoparticle nanocomposite film-modified glassy carbon electrode by one-step electrodeposition. Ionics 23, 767–777 (2017). https://doi.org/10.1007/s11581-016-1843-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1843-6

Keywords

Navigation