Skip to main content
Log in

Electrocatalytic oxidation of l-tyrosine at carboxylic acid functionalized multi-walled carbon nanotubes modified carbon paste electrode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The electrocatalytic oxidation of l-tyrosine (Tyr) was investigated on a carboxylic acid functionalised multi-walled carbon nanotubes modified carbon paste electrode using cyclic voltammetry and amperometry. The surface morphology of the electrodes was studied using field emission (FE)-SEM images, and the interface properties of bare and modified electrodes were investigated by electrochemical impedance spectroscopy (EIS). The influence of the amount of modifier loading and the variation of the pH of the solution on the electrochemical parameters have been investigated. Cyclic voltammetry was carried out to study the electrochemical oxidation mechanism of Tyr, which showed an irreversible oxidation process at a potential of 637.0 mV at modified electrode. The anodic peak current linearly increased with the scan rate, suggesting that the oxidation of Tyr at modified electrode is an adsorption-controlled process. A good linear relationship between the oxidation peak current and the Tyr concentration in the range of 0.8–100.0 μM was obtained in a phosphate buffer solution at pH 7.0 with a detection limit of 14.0 ± 1.36 nM (S/N = 3). The practical utility of the sensor was demonstrated by determining Tyr in spiked cow’s milk and human blood serum. The modified electrode showed excellent reproducibility, long-term stability and antifouling effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Céspedes F, Alegret S (2000) New materials for electrochemical sensing II. Rigid carbon-polymer biocomposites. Trends Anal Chem 9:276–285

    Article  Google Scholar 

  3. Thomas T, Mascarenhas RJ, D’Souza OJ, Detriche S, Mekhalif Z, Martis P (2014) Pristine multi-walled carbon nanotubes/SDS modified carbon paste electrode as an amperometric sensor for epinephrine. Talanta 125:352–360

    Article  CAS  Google Scholar 

  4. Du P, Wu P, Cai C (2008) A glucose biosensor based on electrocatalytic oxidation of NADPH at single-walled carbon nanotubes functionalized with poly(nile blue A). J Electroanal Chem 624:21–26

    Article  CAS  Google Scholar 

  5. Li L-H, Zhang W-D, Ye J-S (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalys 20:2212–2216

    Article  CAS  Google Scholar 

  6. Adekunle AS, Agboola BO, Pillay J, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sens Actuators B 148:93–102

    Article  CAS  Google Scholar 

  7. Mattson MP, Haddon RC, Rao AM (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J Mol Neurosci 14:175–182

    Article  CAS  Google Scholar 

  8. Ziyatdinova G, Ziganshina E, Budnikov H (2014) Electrooxidation of morin on glassy carbon electrode modified by carboxylated single-walled carbon nanotubes and surfactants. Electrochim Acta 145:209–216

    Article  CAS  Google Scholar 

  9. Erden PE, Kaçar C, Öztürk F, Kılıç E (2015) Amperometric uric acid biosensor based on poly(vinylferrocene)-gelatin-carboxylated multiwalled carbon nanotube modified glassy carbon electrode. Talanta 134:488–495

    Article  CAS  Google Scholar 

  10. Hua M-Y, Chen H-C, Tsai R-Y, Tseng S-J, Hu S-C, Chiang C-D, Chang P-J (2011) Preparation of polybenzimidazole-carboxylated multiwalled carbon nanotube composite for intrinsic sensing of hydrogen peroxide. J Phys Chem C 115:15182–15190

    Article  CAS  Google Scholar 

  11. Kar P, Choudhury A (2013) Carboxylic acid functionalized multi-walled carbon nanotube doped polyaniline for chloroform sensors. Sens Actuatore B 183:25–33

    Article  CAS  Google Scholar 

  12. Yogeswaran U, Thiagarajan S, Chen S-M (2007) Pinecone shape hydroxypropyl-β-cyclodextrin on a film of multi-walled carbon nanotubes coated with gold particles for the simultaneous determination of tyrosine, guanine, adenine and thymine. Carbon 45:2783–2796

    Article  CAS  Google Scholar 

  13. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Electrochemical tyrosine sensor on a glassy carbon electrode modified with a nanohybrid made from grapheme oxide and multiwalled carbon nanotubes. Microchim Acta 180:49–58

    Article  CAS  Google Scholar 

  14. Li C (2006) Voltammetric determination of tyrosine based on an L-serine polymer film electrode. Colloids Surf B 50:147–151

    Article  CAS  Google Scholar 

  15. Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    Article  CAS  Google Scholar 

  16. Azuma Y, Maekawa M, Kuwabara Y, Nakajima T, Taniguchi K, Kanno T (1989) Determination of branched-chain amino acids and tyrosine in serum of patients with various hepatic diseases, and its clinical usefulness. Clin Chem 35:1399–1403

    CAS  Google Scholar 

  17. Sánchez-Machado DI, Chavira-Willys B, Löpez-Cervants J (2008) High-performance liquid chromatography with fluorescence detection for quantitation of tryptophan and tyrosine in a shrimp waste protein concentrate. J Chromatogr B 863:88–93

    Article  CAS  Google Scholar 

  18. Wang F, Wu KZ, Qing Y, Ci XY (1992) Spectrofluorimetric determination of the substrates based on the fluorescence formation with the peroxidase-like conjugates of hemie with proteins. Anal Lett 25:1469–1478

    Article  CAS  Google Scholar 

  19. Baghayeri M, Namadchian M, Maleh HK, Beitollahi H (2013) Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: application to the analysis of some real samples. J Electroanal Chem 697:53–59

    Article  CAS  Google Scholar 

  20. Baghayeri M, Namadchian M (2013) Fabrication of a nanostructured luteolin biosensor for simultaneous determination of levodopa in the presence of acetaminophen and tyramine: application to the analysis of some real samples. Electrochim Acta 108:22–31

    Article  CAS  Google Scholar 

  21. Vahedi J, Maleh HK, Baghayeri M, Sanati AL, Khalilzadeh MA, Bahrami M (2013) A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical. Ionics 19:1907–1914

    Article  CAS  Google Scholar 

  22. Baghayeri M, Behrooz M, Zarghani R (2014) Voltammetric behavior of tiopronin on carbon paste electrode modified with nanocrystalline Fe50Ni50 alloys. Mater Sci Eng C 44:175–182

    Article  CAS  Google Scholar 

  23. Wei J, Qiu J, Ren L, Zhang X, Chaudhuri J, Wang S (2012) A reduced graphene oxide based electrochemical biosensor for tyrosine detection. Nanotechnology 23:335707–335714

    Article  CAS  Google Scholar 

  24. Babaei A, Mirzakhani S, Khalilzadeh B (2009) A sensitive simultaneous determination of epinephrine and tyrosine using an iron(III) doped zeolite-modified carbon paste electrode. J Braz Chem Soc 20:1862–1869

    Article  CAS  Google Scholar 

  25. Jiang L, Ding Y, Ye D, Zhang Z, Zhang F (2013) Amperometric sensor based on tricobalt tetroxide nanoparticles–graphene nanocomposite film modified glassy carbon electrode for determination of tyrosine. Colloids Surf B 107:146–151

    Article  CAS  Google Scholar 

  26. Nie R, Bo X, Wang H, Zeng L, Guo L (2013) Chiral electrochemical sensing for tyrosine enantiomers on glassy carbon electrode modified with cysteic acid. Electrochem Commun 27:112–115

    Article  CAS  Google Scholar 

  27. Yola ML, Eren T, Atar N (2015) A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens Acutators B 210:149–157

    Article  CAS  Google Scholar 

  28. Yu X, Mai Z, Xiao Y, Zou X (2008) Electrochemical behavior and determination of L-tyrosine at single-walled carbon nanotubes modified glassy carbon electrode. Electroanalys 20:1246–1251

    Article  CAS  Google Scholar 

  29. Svancara I, Schachl K (1999) Testing of unmodified carbon paste electrodes. Chem List 93:490–499

    CAS  Google Scholar 

  30. Kalcher K, Kauffmann J-M, Wang J, Svancara I, Vytras K, Neuhold C, Yang Z (1995) Sensors based on carbon paste in electrochemical analysis: a review with particular emphasis on the period. Electroanalys 7:5–22

    Article  CAS  Google Scholar 

  31. Sherigara BS, Shivaraj Y, Mascarenhas RJ, Satpati AK (2007) Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: assessment of quantification procedures by anodic stripping voltammetry. Electrochim Acta 52:3137–3142

    Article  CAS  Google Scholar 

  32. Mascarenhas RJ, Satpati AK, Yellappa S, Sherigara BS, Bopiah AK (2006) Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Anal Sci 22:871–875

    Article  CAS  Google Scholar 

  33. Thomas T, Mascarenhas RJ, Martis P, Mekhalif Z, Swamy BEK (2013) Multi-walled carbon nanotube modified carbon paste electrode as an electrochemical sensor for the determination of epinephrine in the presence of ascorbic acid and uric acid. Mater Sci Eng C 33:3294–3302

    Article  CAS  Google Scholar 

  34. Thomas T, Mascarenhas RJ, D’Souza OJ, Martis P, Dalhalle J, Swamy BEK (2013) Multi-walled carbon nanotube modified carbon paste electrode as a sensor for the amperometric detection of l-tryptophan in biological samples. J Colloids Inter Sci 402:223–229

    Article  CAS  Google Scholar 

  35. D’Souza OJ, Mascarenhas RJ, Thomas T, Namboothiri INN, Rajamathi M, Martis P, Delhalle J (2013) Electrochemical determination of L-tryptophan based on a multiwall carbon nanotube/Mg-Al layered double hydroxide modified carbon paste electrode as a sensor. J Electroanal Chem 704:220–226

    Article  CAS  Google Scholar 

  36. D’Souza OJ, Mascarenhas RJ, Thomas T, Basavaraja BM, Saxena AK, Mukhopadhyay K, Roy D (2015) Platinum decorated multi-walled carbon nanotubes/Triton X-100 modified carbon paste electrode for the sensitive amperometric determination of paracetamol. J Electroanal Chem 739:49–57

    Article  CAS  Google Scholar 

  37. Pradhan P, Mascarenhas RJ, Thomas T, Namboothiri INN, D’Souza OJ, Mekhalif Z (2014) Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples. J Electroanal Chem 732:30–37

    Article  CAS  Google Scholar 

  38. Guha KS, Mascarenhas RJ, Thomas T, D’Souza OJ (2014) Differential pulse anodic stripping voltammetric determination of Hg2+ at poly(Eriochrome Black T)-modified carbon paste electrode. Ionics 20:849–856

    Article  CAS  Google Scholar 

  39. Batra B, Pundir CS (2013) An amperometric glutamate biosensor based on immobilization of glutamate oxidase onto carboxylated multiwalled carbon nanotubes/gold nanoparticles/chitosan composite film modified Au electrode. Biosens Bioelectron 47:496–501

    Article  CAS  Google Scholar 

  40. Feng S, Zhang Y, Zhong Y, Li Y, Li S (2014) Simultaneous determination of hydroquinone and catechol using covalent layer-by-layer self-assembly of carboxylated MWCNTs. J Eletroanal Chem 733:1–5

    Article  CAS  Google Scholar 

  41. Huang K-J, Luo D-F, Xie W-Z, Yu Y-S (2008) Sensitive voltammetric determination of tyrosine using multi-walled carbon nanotubes/4-aminobenzenesulfonic acid film-coated glassy carbon electrode. Colloids Surf B 61:176–181

    Article  CAS  Google Scholar 

  42. Liu X, Luo L, Ding Y, Kang Z, Ye D (2012) Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode. Bioelectrochem 86:38–45

    Article  CAS  Google Scholar 

  43. Ghoreishi SM, Behpour M, Delshad M, Khoobi A (2012) Electrochemical determination of tyrosine in the presence of uric acid at a carbon paste electrode modified with multi-walled carbon nanotubes enhanced by sodium dodecyl sulfate. Cent Eur J Chem 10:1824–1829

    CAS  Google Scholar 

  44. Behpour M, Masoum S, Meshki M (2013) Study and electrochemical determination of tyrosine at graphene nanosheets composite film modified glassy carbon electrode. JNS 3:243–251

    Google Scholar 

  45. Cheng H, Chen C, Zhang S (2009) Electrochemical behavior and sensitive determination of L-tyrosine with gold nanoparticles modified glassy carbon electrode. Anal Sci 25:1221–1225

    Article  CAS  Google Scholar 

  46. Xu Q, Wang SF (2005) Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 151:47–52

    Article  CAS  Google Scholar 

  47. Kanchana P, Lavanya N, Sekar C (2014) Development of amperometric L-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. Mat Sci Engg C 35:85–91

  48. Fan Y, Liu J-H, Lu H-T, Zhang Q (2011) Electrochemistry and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with a nafion/TiO2-graphene composite film. Microchim Acta 173:241–247

    Article  CAS  Google Scholar 

  49. Zhu S, Zhang J, X-en Z, Wang H, Xu G, You J (2014) Electrochemical behavior and voltammetric determination of L-tryptophan and L-tyrosine using a glassy carbon electrode modified with single-walled carbon nanohorns. Microchim Acta 181:445–451

    Article  CAS  Google Scholar 

  50. Taei M, Ramazani G (2014) Simultaneous determination of norepinephrine, acetaminophen and tyrosine by differential pulse voltammetry using Au-nanoparticles/poly(2-amino-2-hydroxymethyl-propane-1,3-diol) film modified glassy carbon electrode. Colloids Surf B 123:23–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors Ozma, Ashis and Ronald gratefully acknowledge the financial support rendered by the Board of Research in Nuclear Sciences (BRNS, BARC, Mumbai), Department of Atomic Energy, Government of India, under the Major Research Project Sanction No: 37(2)/14/10/2014-brns (Basic Sciences Category) to carry out the present research work. The authors also acknowledge St. John’s Medical College, Bangalore, India, for providing them with the serum for real sample analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald J. Mascarenhas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Souza, O.J., Mascarenhas, R.J., Satpati, A.K. et al. Electrocatalytic oxidation of l-tyrosine at carboxylic acid functionalized multi-walled carbon nanotubes modified carbon paste electrode. Ionics 22, 405–414 (2016). https://doi.org/10.1007/s11581-015-1552-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1552-6

Keywords

Navigation