Skip to main content
Log in

A novel LiSnVO4 anode material for lithium-ion batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this work, a new material LiSnVO4 has been prepared via sol-gel method utilizing ammonium metavanadate, acetates of tin and lithium as starting materials, and nitric acid and oxalic acid as complexing agents. The amount of starting materials used has been chosen so that the mole ratio of Li/Sn/V is 1:1:1. The sol-gel precursor has been sintered at 700 °C for 6 h. Based on thermogravimetry analysis (TGA) analysis, the formation mechanism suggested the product to be LiSnVO4. Energy-dispersive X-ray analysis (EDX) reveals the ~1:1 ratio of Sn:V. EDX results agree reasonably with the formation mechanism from TGA analysis that the Sn:V ratio is 1:1. Results from X-ray photoelectron spectroscopy (XPS) indicate that the oxidation states of Li, Sn, and V are +1, +2, and +5, respectively. Since there is no ICDD data available to match the XRD diffractogram of the material obtained, CMPR and powder diffraction data interpretation and indexing program (POWD) softwares have been used to predict the crystal structure system to be tetragonal (similar to that of SnO2). A fabricated LiSnVO4//Li cell can deliver a large initial irreversible discharge capacity of 1270 mAh g−1 and reversible capacity of 305.4 mAh g−1 at the end of second cycle, which drops to 211 mAh g−1 at the end of 53rd cycle. The capacity retention is 69 % with respect to the second discharge capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397

    Article  CAS  Google Scholar 

  2. Liu R, Li N, Li D, Xia G, Zhu Y, Yu S, Wang C (2012) Template-free synthesis of SnO2 hollow microspheres as anode material for lithium-ion battery. Mater Lett 73:1–3

    Article  CAS  Google Scholar 

  3. Sharma N, Shaju KM, Subba Rao GV, Chowdari BVR (2002) Sol–gel derived nano-crystalline CaSnO3 as high capacity anode material for Li-ion batteries. Electrochem Commun 4:947–952

    Article  CAS  Google Scholar 

  4. Wang Q, Huang Y, Miao J, Zhao Y, Wang Y (2012) Synthesis and properties of carbon-doped Li2SnO3 nanocomposites as cathode material for lithium-ion batteries. Mater Lett 71:66–69

    Article  CAS  Google Scholar 

  5. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  6. Wang QF, Huang Y, Zhao Y, Zhan W, Wang Y (2013) Preparation of Li2SnO3 and its application in lithium-ion batteries. Surf Inter Anal 45:1297–1303

    Article  CAS  Google Scholar 

  7. Wang L, Zhang W, Wang C, Wang D, Liu Z, Hao Q, Wang Y, Tang K, Qian Y (2014) A facile synthesis of highly porous CdSnO3 nanoparticles and their enhanced performance in lithium-ion batteries. J Mater Chem A 2:4970–4974

    Article  CAS  Google Scholar 

  8. Zhang DW, Zhang SQ, Jin Y, Yi TH, Xie S, Chen CH (2006) Li2SnO3 derived secondary Li-Sn alloy electrode for lithium-ion batteries. J. Alloys Comp 415:229–233

    Article  CAS  Google Scholar 

  9. Zhao Y, Huang Y, Wang Q, Wang X, Zong M (2013) Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries. Ceram Int 39:1741–1747

    Article  CAS  Google Scholar 

  10. Jayaprakash N, Kalaiselvi N, Sun YK (2008) Combustion synthesized LiMnSnO4 cathode for lithium batteries. Electrochem Commun 10:455–460

    Article  CAS  Google Scholar 

  11. Mani V, Babu G, Kalaiselvi N (2014) Li2MnSnO4/C anode for high capacity and high rate lithium battery applications. Electrochim Acta 133:347–353

    Article  CAS  Google Scholar 

  12. Kishore MVVMS, Varadaraju UV, Raveau B (2004) Electrochemical performance of LiMSnO4 (M = Fe, In) phases with ramsdellite structure as anodes for lithium batteries. J Solid State Chem 177:3981–3986

    Article  Google Scholar 

  13. Jayaprakash N, Kalaiselvi N (2008) Structural and electrochemical investigation of Li2MgSnO4 anode for lithium-ion batteries. Electrochem Commun 10:891–894

    Article  CAS  Google Scholar 

  14. Toby BH (2005) CMPR-a powder diffraction toolkit. J Appl Crystallogr 38:1040–1041

    Article  CAS  Google Scholar 

  15. Wu E (1989) POWD, an interactive program for powder diffraction data interpretation and indexing. J Appl Crystallogr 22:506–510

    Article  CAS  Google Scholar 

  16. Thongtem T, Thongtem S (2005) Preparation and characterization of Li1-xNi1+xO2 powder used as cathode materials. Adv Technol Mater Mater Process 7:71–76

    CAS  Google Scholar 

  17. Shaheen WM, Maksod IHAE (2009) Thermal characterization of individual and mixed basic copper carbonate and ammonium metavanadate systems. J Alloys Compd 476:366–372

    Article  CAS  Google Scholar 

  18. Hagemeyer A, Hogan Z, Schlichter M, Smaka B, Streukens G, Turner H, Volpe A Jr, Weinberg H, Yaccato K (2007) High surface area tin oxide. Appl Catal A Gen 317:139–148

    Article  CAS  Google Scholar 

  19. Prakash D, Masuda Y, Sanjeeviraja C (2013) Synthesis and structure refinement studies of LiNiVO4 electrode material for lithium rechargeable batteries. Ionics 19:17–23

    Article  CAS  Google Scholar 

  20. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Chastain J (ed) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, United States of America

    Google Scholar 

  21. Bose AC, Kalpana D, Thangadurai P, Ramasamy S (2002) Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. J Power Sources 107:138–141

    Article  CAS  Google Scholar 

  22. Altomare A, Giacovazzo C, Guagliardi A, Moliterni AGG, Rizzi R, Werner P-E (2000) New techniques for indexing: N-TREOR in EXPO. J Appl Crystallogr 33:1180–1186

    Article  CAS  Google Scholar 

  23. Zhao S, Bai Y, Zhang W-F (2010) Electrochemical performance of flowerlike CaSnO3 as high capacity anode material for lithium-ion batteries. Electrochim Acta 55:3891–3896

    Article  CAS  Google Scholar 

  24. Li C, Zhu Y, Fang S, Wang H, Gui Y, Bi L, Chen R (2011) Preparation and characterization of SrSnO3 nanorods. J Phys Chem Solids 72:869–874

    Article  CAS  Google Scholar 

  25. Hu X, Xiao T, Huang W, Tao W, Heng B, Chen X, Tang Y (2012) Synthesis, characterization of core-shell carbon-coated CaSnO3 nanotubes and their performance as anode of lithium ion battery. Appl Surf Sci 258:6177–6183

    Article  CAS  Google Scholar 

  26. Liang Z, Zhao Y, Dong Y, Kuang Q, Lin X, Liu X, Yan D (2015) The low and high temperature electrochemical performance of Li3VO4/C anode material for Li-ion batteries. J Electroanal Chem 745:1–7

    Article  CAS  Google Scholar 

  27. Li M, Yang X, Wang C, Chen N, Hu F, Bie X, Wei Y, Du F, Chen G (2015) Electrochemical properties and lithium-ion storage mechanism of LiCuVO4 as an intercalation anode material for lithium-ion batteries. J Mater Chem A 3:586–592

    Article  CAS  Google Scholar 

  28. Landschoot NV, Kelder EM, Kooyman PJ, Kwakernaak C, Schoonman J (2004) Electrochemical performance of Al2O3-coated Fe doped LiCoVO4. J Power Sources 138:262–270

    Article  Google Scholar 

  29. Teo LP, Buraidah MH, Alias NA, Kufian MZ, Majid SR, Arof AK (2011) Characterisation of Li2SnO3 by solution evaporation method using nitric acid as chelating agent. Mater Res Innov 15:S2-127–S2-131

    Article  Google Scholar 

  30. Landschoot NV, Kelder EM, Schoonman J (2004) Citric acid-assisted synthesis and characterization of doped LiCoVO4. Solid State Ionics 166:307–316

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank University of Malaya and Ministry of Science, Technology and Innovation (MOSTI) for financial support (PPP grant no. PV030-2011B and Nanofund grant no. 53-02-03-1089). Authors acknowledge Prof M. Ambar Yarmo from National University of Malaysia for making this paper successful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Arof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teo, L.P., Buraidah, M.H. & Arof, A.K. A novel LiSnVO4 anode material for lithium-ion batteries. Ionics 21, 2393–2399 (2015). https://doi.org/10.1007/s11581-015-1504-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1504-1

Keywords

Navigation