Skip to main content
Log in

Flexible carbon nanostructures with electrospun nickel oxide as a lithium-ion battery anode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Carbon nanostructures (CNS) with high electrical conductivity and unique branched structure of carbon nanotubes combined with NiO nanofibers (NFs) were used as anode for lithium-ion batteries. CNS works as a framework substrate for the anodic conversion reaction of nickel oxide (NiO). Electrochemical performance and behavior of CNS/NiO anodes is compared with the conventional carbon (C)/NiO anodes. CNS/NiO NF-based anode retains high specific capacity under different current densities compared to C/NiO anode. Moreover, specific capacity as high as 450 mAh/g for CNS/NiO NF anode is observed compared to only 90 mAh/g for C/NiO NFs using a current density of 500 mA/g after 500 cycles. This improved performance is attributed to the highly conductive network of CNS leading to efficient charge transfer. The high porosity, electrical conductivity as well as the branched and networked nature of CNS reveal to be of critical importance to allow the electrochemical conversion reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Van Schalkwijk W, Scrosati B (2002) Advances in lithium-ion batteries. Springer

  2. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Envniron Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  3. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104(10):4271–4302

    Article  CAS  Google Scholar 

  4. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24

    Article  CAS  Google Scholar 

  5. Pistoia G (1994) Lithium batteries: new materials, developments, and perspectives, vol 5. Elsevier Science Ltd

  6. Yamaura J, Ozaki Y, Morita A, Ohta A (1993) High voltage, rechargeable lithium batteries using newly-developed carbon for negative electrode material. J Power Sources 43(1):233–239

    Article  CAS  Google Scholar 

  7. Nazri G-A, Pistoia G (2008) Lithium batteries: science and technology. Springer Science & Business

  8. Johnson C, Vaughey J, Thackeray M, Sarakonsri T, Hackney S, Fransson L, Edström K, Thomas JO (2000) Electrochemistry and in-situ X-ray diffraction of InSb in lithium batteries. Electrochem Commun 2(8):595–600

    Article  CAS  Google Scholar 

  9. Fransson LM, Vaughey J, Benedek R, Edström K, Thomas JO, Thackeray M (2001) Phase transitions in lithiated Cu2Sb anodes for lithium batteries: an in situ X-ray diffraction study. Electrochem Commun 3(7):317–323

    Article  CAS  Google Scholar 

  10. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  CAS  Google Scholar 

  11. Song M-K, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R Rep 72(11):203–252

    Article  Google Scholar 

  12. de las Casas C, Li W (2012) A review of application of carbon nanotubes for lithium ion battery anode material. J Power Sources 208:74–85

    Article  Google Scholar 

  13. Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471

    Article  CAS  Google Scholar 

  14. Lalia BS, Shah T, Hashaikeh R (2015) Microbundles of carbon nanostructures as binder free highly conductive matrix for LiFePO4 battery cathode. J Power Sources 278 (0):314-319. doi:10.1016/j.jpowsour.2014.12.079

  15. Liang C, Gao M, Pan H, Liu Y, Yan M (2013) Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. J Alloys Compd 575:246–256

    Article  CAS  Google Scholar 

  16. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

  17. Wu HB, Chen JS, Hng HH, Lou XWD (2012) Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 4(8):2526–2542

    Article  CAS  Google Scholar 

  18. Li H, Li D, Zhou H One‐dimensional nanostructured metal oxides for lithium ion batteries. One-dimensional nanostructures: principles and applications:295-320

  19. Needham SA, Wang G, Liu HK (2006) Synthesis of NiO nanotubes for use as negative electrodes in lithium ion batteries. J Power Sources 159(1):254–257

    Article  CAS  Google Scholar 

  20. Cohen-Hyams T, Bhargava Y, Thorne S, Wilcox J, Devine T (2008) Synthesis of NiO nanowiress for use in lithium batteries. ECS Trans 11(31):1–7

    Article  CAS  Google Scholar 

  21. Su D, Kim HS, Kim WS, Wang G (2012) Mesoporous nickel oxide nanowires: hydrothermal synthesis, characterisation and applications for lithium‐ion batteries and supercapacitors with superior performance. Chem Eur J 18(26):8224–8229

    Article  CAS  Google Scholar 

  22. Aravindan V, Suresh Kumar P, Sundaramurthy J, Ling WC, Ramakrishna S, Madhavi S (2013) Electrospun NiO nanofibers as high performance anode material for Li-ion batteries. J Power Sources 227:284–290

    Article  CAS  Google Scholar 

  23. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89(2):395–407

    Article  CAS  Google Scholar 

  24. Khalil A, Hashaikeh R (2014) Electrospinning of nickel oxide nanofibers: process parameters and morphology control. Mater Charact 49:3052–3065

    CAS  Google Scholar 

  25. Shah TK, Malecki HC, Basantkumar RR, Liu H, Fleischer CA, Sedlak JJ, Patel JM, Burgess WP, Goldfinger JM (2013) Carbon nanostructures and methods of making the same. Google Patents

  26. Varghese B, Reddy M, Yanwu Z, Lit CS, Hoong TC, Subba Rao G, Chowdari B, Wee ATS, Lim CT, Sow C-H (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20(10):3360–3367

    Article  CAS  Google Scholar 

  27. Zhang C, Tu J, Yuan Y, Huang X, Chen X, Mao F (2007) Electrochemical performances of Ni-coated ZnO as an anode material for lithium-ion batteries. J Electrochem Soc 154(2):A65–A69

    Article  CAS  Google Scholar 

  28. Brodd RJ (2012) Batteries for sustainability: selected entries from the encyclopedia of sustainability science and technology. Springer Science & Business Media

  29. Huang X, Tu J, Zhang C, Xiang J (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9(5):1180–1184

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raed Hashaikeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalia, B.S., Khalil, A., Shah, T. et al. Flexible carbon nanostructures with electrospun nickel oxide as a lithium-ion battery anode. Ionics 21, 2755–2762 (2015). https://doi.org/10.1007/s11581-015-1482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1482-3

Keywords

Navigation