Skip to main content
Log in

The optimal condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

An orthogonal test design was applied to confirm the optimum condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption. Extraction and adsorption mechanism and cycle performance were studied. The verified optimal condition is confirmed as the Li+ concentration, adsorption temperature, molar ratio of Li/Ti, reaction, and pre-calcination temperature are 4.0 g L−1, 60 °C, 2.2, and 650 and 25 °C, respectively. Under the optimal condition, the adsorptive capacity reaches 57.8 mg g−1. Adsorptive capacity of the adsorbent maintains in 5 cycles, typically 25–30 mg g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hamzaoui A, Hammi H, M’nif A (2007) Operating conditions for lithium recovery from natural brines. Russ J Inorg Chem 52(12):1859–1863

    Article  Google Scholar 

  2. Van Ginkel SW, Tang Y, Rittmann BE (2011) Impact of precipitation on the treatment of real ion-exchange brine using the H2-based membrane biofilm reactor. Water Sci Technol 63(7):1453

    Article  Google Scholar 

  3. Chitrakar R et al (2014) Lithium recovery from salt lake brine by H 2 TiO 3. Dalton Trans 43(23):8933–8939

    Article  CAS  Google Scholar 

  4. Shi X-C et al (2013) Synthesis of Li+ adsorbent (H2TiO3) and its adsorption properties. Trans Nonferrous Metals Soc China 23(1):253–259

    Article  CAS  Google Scholar 

  5. Tian L, Ma W, Han M (2010) Adsorption behavior of Li+ onto nano-lithium ion sieve from hybrid magnesium/lithium manganese oxide. Chem Eng J 156(1):134–140

    Article  CAS  Google Scholar 

  6. Xu C et al (2014) Effect of Cl on the properties of Li2TiO3 ceramic powders synthesized by in-situ hydrolysis. Ceram Int 40(5):7213–7218

    Article  CAS  Google Scholar 

  7. Wu X et al (2008) Optimization of a wet chemistry method for fabrication of Li2TiO3 pebbles. J Nucl Mater 373(1):206–211

    Article  CAS  Google Scholar 

  8. Wu X et al (2008) Sol–gel synthesis and sintering of nano-size Li2TiO3 powder. Mater Lett 62(6):837–839

    Article  CAS  Google Scholar 

  9. Sinha A, Nair SR, Sinha PK (2010) Single step synthesis of Li2TiO3 powder. J Nucl Mater 399(2):162–166

    Article  CAS  Google Scholar 

  10. Ramaraghavulu R, Buddhudu S, Bhaskar Kumar G (2011) Analysis of structural and thermal properties of Li2TiO3 ceramic powders. Ceram Int 37(4):1245–1249

    Article  CAS  Google Scholar 

  11. Li Y et al (2012) Synthesis of Li2TiO3 ceramic breeder powders by in-situ hydrolysis and its characterization. Mater Lett 89:25–27

    Article  CAS  Google Scholar 

  12. Lee S-J, Park Y-H, Yu M-W (2013) Fabrication of Li2TiO3 pebbles by a freeze drying process. Fusion Eng Des 88(11):3091–3094

    Article  CAS  Google Scholar 

  13. Dong D-Q et al (2007) Synthesis of Li 4 Ti 5 O l2 and its exchange kinetics with Li. Acta Phys Chim Sin 23(06):950–954

    CAS  Google Scholar 

  14. Deptuła A et al (2009) Preparation of spherical particles of Li2TiO3 (with diameters below 100 μm) by sol–gel process. Fusion Eng Des 84(2):681–684

    Article  Google Scholar 

  15. Laumann A et al (2010) Metastable formation of low temperature cubic Li2TiO3 under hydrothermal conditions—its stability and structural properties. Solid State Ionics 181(33):1525–1529

    Article  CAS  Google Scholar 

  16. WU S-C et al (2011) Effect of heat-treatment temperature on the structure and properties of Li_4Ti_5O_ (12) nanorods prepared by the hydrothermal ion exchange method. J Inorg Mater 2:004

    Google Scholar 

  17. Zhang L et al (2014) Effect of crystal phases of titanium dioxide on adsorption performance of H2TiO3-lithium adsorbent. Mater Lett 135:206–209

    Article  CAS  Google Scholar 

  18. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978

    Article  CAS  Google Scholar 

  19. Yuan T et al (2010) A mechanism study of synthesis of Li4Ti5O12 from TiO2 anatase. J Alloys Compd 505(1):367–373

    Article  CAS  Google Scholar 

  20. Arai H et al (1995) Characterization and cathode performance of Li1 − xNi1 + xO2 prepared with the excess lithium method. Solid State Ionics 80(3–4):261–269

    Article  CAS  Google Scholar 

  21. Marcus Y (1991) Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J Chem Soc, Faraday Trans 87(18):2995–2999

    Article  CAS  Google Scholar 

  22. Kataoka K et al (2009) Crystal growth and structure refinement of monoclinic Li2TiO3. Mater Res Bull 44(1):168–172

    Article  CAS  Google Scholar 

  23. Vijayakumar M et al (2009) Combined 6, 7Li NMR and molecular dynamics study of Li diffusion in Li2TiO3. J Phys Chem C 113(46):20108–20116

    Article  CAS  Google Scholar 

  24. Hosogi Y, Kato H, Kudo A (2008) Visible light response of AgLi 1/3 M 2/3 O 2 (M = Ti and Sn) synthesized from layered Li 2 MO 3 using molten AgNO 3. J Mater Chem 18(6):647–653

    Article  CAS  Google Scholar 

  25. Denisova TA et al (2006) Metatitanic acid: synthesis and properties. Russ J Inorg Chem 51(5):691–699

    Article  Google Scholar 

  26. Ariza MJ et al (2006) Probing the local structure and the role of protons in lithium sorption processes of a new lithium-rich manganese oxide. Chem Mater 18(7):1885–1890

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dali Zhou or Yuanwen Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, G., Zhang, L., Zhou, D. et al. The optimal condition for H2TiO3–lithium adsorbent preparation and Li+ adsorption confirmed by an orthogonal test design. Ionics 21, 2219–2226 (2015). https://doi.org/10.1007/s11581-015-1393-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1393-3

Keywords

Navigation