Skip to main content
Log in

Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A highly sensitive and selective sensor is fabricated based on graphene/titanium dioxide/polyaniline modified glassy carbon electrode (GRP/TiO2/PANI/GCE). It is demonstrated that this sensor can be used for determination of a pharmaceutically important compound aripiprazole (ARP) using square wave voltammetry and cyclic voltammetry (SWV & CV). Scanning electron microscope (SEM) was used to investigate the assembly process of the nanocomposite modifier. The electrochemical investigation of ARP at (GRP/TiO2/PANI/GCE) was found to be the function of pH of the supporting electrolyte, and variation in scan rate and concentration. Electro-oxidation of ARP showed irreversible and adsorption-controlled behaviour at GRP/TiO2/PANI/GCE. Charge transfer coefficient and number of electrons and protons involved in the electrode mechanism were calculated. SWV of different concentrations of ARP showed a linear dynamic range from 5 to 40 ng/mL with the detection limit of 0.99 ng/mL. The analytical performance of this sensor has been evaluated for the detection of ARP in pharmaceutical formulation with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9

Similar content being viewed by others

References

  1. De-Leon A, Patel NC, Crismon ML (2004) Aripiprazole: a comprehensive review of its pharmacology, clinical efficacy and tolerability. Clin Ther 26:649–666

    Article  CAS  Google Scholar 

  2. Liberman JA (2004) Dopamine partial agonist: a new class of antipsychotic. CNS Drugs 18:251–267

    Article  Google Scholar 

  3. Mallikarjun S, Salazar DE, Bramer SL (2007) Pharmacokinetics, tolerability and safety of aripiprazole following multiple oral dosing in normal healthy volunteers. J Clin Pharmacol 44:179–187

    Article  Google Scholar 

  4. Shinokawa Y, Akiyama H et al (2005) High performance liquid chromatography methods for the determination of aripiprazole with ultraviolet detection in rat plasma and brain: application to the pharmokinetic study. J Chromatogr B 821:8–14

    Article  Google Scholar 

  5. Kircherr H, Kuhn-Welten WN (2006) Quantitative determination of forty-eight antidepressants and antipsychotics In human serum by HPLC tandem mass spectrometry: a multilevel single-sample approach. J. Chromatogr B 843:100–113

    Article  Google Scholar 

  6. Li KY, Zho YG et al (2007) Ultra-performance liquid chromatography tandem mass spectrometry for the determination of atypical anti-psychotics and some metabolites in in-vitro samples. J Chromatogr B 850:581–585

    Article  CAS  Google Scholar 

  7. Kubo M, Mizzoku Y et al (2005) Development and validation of an LC-MS/MS method for the quantitative determination of aripiprazole and its main metabolite, OPC-14857 in human blood plasma. J Chromatogr B 822:294–299

    Article  CAS  Google Scholar 

  8. Song M, Xu X et al (2009) Development of an LC-MS/MS method for the simultaneous quantification of aripiprazole and dehydroaripiprazole in human plasma. Anal Biochem 385:270–277

    Article  CAS  Google Scholar 

  9. Asangil D, Tasdemir IH, Kilic E (2012) Adsorptive stripping voltammetric methods for the determination of aripiprazole. J Pharmaceut Anal 2:193–199

    CAS  Google Scholar 

  10. Meli D, Dondi D, Ravelli D, Tacchini D, Profuma A (2013) Electrochemistry and analytical determination of aripiprazole and octoclothepin at glassy carbon electrode. J Electroanal Chem 711:1–7

    Article  Google Scholar 

  11. Jain R, Jadon N, Radhapyari K (2006) Determination of antihelminthic drug pyrantel pamoate in bulk and pharmaceutical formulations using electroanalytical methods. Talanta 70:383–386

    Article  CAS  Google Scholar 

  12. Jain R, Yadav V (2011) Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon electrode baed sensor in bulk form and pharmaceutical formulation. Colloid Surf B: Biointerfaces 87:423–426

    Article  CAS  Google Scholar 

  13. Kang X, Jun W, Hong W et al (2010) A graphene based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  14. Jain R, Diwedi A, Mishra R (2009) Adsorptive stripping voltammetric behaviour of nortriptyline hydrochloride and its determination in surfactant media. Langmuir 25:10364–10369

    Article  CAS  Google Scholar 

  15. Goyal RN, Gupta VK, Chatergee S (2009) Fullerene-C60-modified edge plane pyrolytic graphite electrode for the determination of dexamethasone in pharmaceutical formulations and human biological fluids. Biosens Bioelectron 24:1649–1654

    Article  CAS  Google Scholar 

  16. Goyal RN, Gupta VK, Bachheti N, Fullerene C60-modified electrode as a sensitive voltammetric sensor for detection of nandrolon, an anabolic steroid used in doping. Analyt. Chim. Acta. 597: 82–89

  17. Salinii A, Hallaj R (2012) Cobalt Oxide nanostructure modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin. J Sol Stat Electrochem 16:1239–1246

    Article  Google Scholar 

  18. Kalanur SS, Jaldappagari S, Balakrishnan S (2011) Enhanced electrochemical response of carbamazepine at a nano-structured sensing film of fullerene-C60 and its analytical applications 56: 5295–5301

  19. Ratinac KR, Yang W et al (2011) Graphene and related materials in electrochemical sensing. Electroanalysis 23:803–826

    Article  CAS  Google Scholar 

  20. Liu YX, Dong XC, Chen P (2012) Biological and chemicals sensors based on graphene materials. Chem Soc Rev 41:2283–2307

    Article  CAS  Google Scholar 

  21. Zhang YB, Tan YW et al (2005) Experimental observation of the quantum hall effect and Berry’s Phase in graphene. Nature 438:201–204

    Article  CAS  Google Scholar 

  22. Balandin AA, Ghosh S et al (2008) Superior thermal conductivity of single layer graphene. Nano Lett 8:902–907

    Article  CAS  Google Scholar 

  23. Gomez-Navarro C, Burghard M, Kern K (2008) Elastic properties of chemically derived single layer graphene sheets. Nano Lett 8:2045–2049

    Article  CAS  Google Scholar 

  24. Stoller MD, Park S et al (2008) Graphene based ultracapacitors. Nano Lett 8:3498–3502

    Article  CAS  Google Scholar 

  25. Lian W, Liu S et al (2012) Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan/platinum nanoparticles/graphene-Au nanoparticles double nanocomposite modified electrode for the detection of erythromycin. Biosens Bioelectron 38:163–169

    Article  CAS  Google Scholar 

  26. Ye D, Luo L et al (2011) A novel nitrite sensor based on graphene/polypyrolle/chitosan nanocomposite modified glassy carbon electrode. Analyst 136:1563–1569

    Google Scholar 

  27. Basanayak PA, Ram MK et al (2013) Graphene/polypyrolle nanocomposite as electrochemical super capacitor electrode: electrochemical impedance studies. Sci Res 2:81–87

    Google Scholar 

  28. Wu C, Huang X et al (2013) Highly conductive nanocomposites with three dimensional compactly interconnected graphene networks via a self-assembly process. Adv Funct Mater 23:506–513

    Article  CAS  Google Scholar 

  29. Fan H, Wang L et al (2010) Fabrication, mechanical properties and biocompatibility of graphene-reinforced chitosan composites. Biomacromol 11:2345–2351

    Article  CAS  Google Scholar 

  30. Shih Y-T, Lee K-Y, Huang Y-S (2014) Electrochemical capacitance characteristics of patterned ruthenium dioxide-carbon nanotube nanocomposites grown onto graphene. Appl Surf Sci 294:29–35

    Article  CAS  Google Scholar 

  31. Muszynski R, Seger B, Kanat (2010) Decorating enhanced photoresponse of reduced graphene oxide. ACS Nano 4:3033–3038

    Article  Google Scholar 

  32. Geng X, Niu L, Xing Z et al (2010) Aqueous processable noncovalent chemically converted graphene quantum dot composite for flexible and transparent opto electronic films. Adv Mater 22:638–642

    Article  CAS  Google Scholar 

  33. Cao A, Liu Z, Chu S et al (2010) A facile one step method to produce graphene-Cds quantum dot nanocomposites as promising opto electronic materials. Adv Mater 22:103–106

    Article  CAS  Google Scholar 

  34. Xu J, Wang K, Zu S-Z et al (2010) Hiearchial nanocomposite of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4:5019–5026

    Article  CAS  Google Scholar 

  35. Lin Y, Zhang K, Chen W et al (2010) Dramatically enhanced photoresponse of reduced graphene oxide. ACS Nano 4:3033–3038

    Article  CAS  Google Scholar 

  36. Wang F, Wang W, Liu B et al (2009) Copolypeptide-doped polyaniline nanofibres for electrochemical detection of ultratrace trinitrotoluene. Talanta 79:376–382

    Article  CAS  Google Scholar 

  37. Khan R, Solanki PR et al (2009) Cholesterol biosensor based on electrochemicall prepared polyaniline conducting polymer film in presence of non-ionic surfactant. J Polym Res 16:363–373

    Article  CAS  Google Scholar 

  38. Tiwari DC, Jain R, Sharma S (2008) Spectroscopic and thermogravimetric analysis of PANI/ PPY composite polymer electrode: its application to electrochemical investigation of pharmaceutical formulation. J Appl Polym Sci 110:2328–2336

    Article  CAS  Google Scholar 

  39. Jia Q, Shan S, Jiang L, Wang Y (2010) One step synthesis of polyaniline nanofibres decorated with silver. J Appl Polym Sci 115:26–31

    Article  CAS  Google Scholar 

  40. Zhang J, Zheng Y et al (2008) Electrocatalytic evaluation of liquid phase deposited methylene blue/TiO2 hybrid films. Electrochem Commun 10:1038–1040

    Article  CAS  Google Scholar 

  41. Xu C-X, Huang K-J et al (2012) Electrochemical determination of acetaminophen based on TiO2-graphene/poly (methyl red) composite film modified electrode. J Mol Liq 10:1038–1040

    Google Scholar 

  42. Kumaravel A, Chandrashekaran M (2011) Electrochemical determination of imidacloprid using nanosilver nafion/ nano TiO2 nafion compositemodified glassy carbon electrode. Sens Actuators B: Chem 158:319–326

    Article  CAS  Google Scholar 

  43. Yang L, Yang W, Cai Q (2007) Well-dispersed Pt Au nanoparticles loaded into anodic titania nanotubes: a high antipoison and stable catalyst system for methanol oxidation in alkaline media. J Phys Chem 111:16613–16617

    CAS  Google Scholar 

  44. Rella R, Spadavecchia J et al (2007) Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens Actuator B: Chem 127:426–431

    Article  CAS  Google Scholar 

  45. Lin W-J, Hsu C-T, Tsai Y-C (2011) Dyesensitized solar cells based on multiwalled carbon nanotube-titania/ titania bilayer structure photoelectrode. J Colloid Interface Sci 358:562–566

    Article  CAS  Google Scholar 

  46. Wang J, Zhao R, Xu M, Cheng G (2010) Cathodic electrochemiluminescence of luminol in aqueous solutions based on C-doped oxide covered titanium electrode. Electrochim Acta 56:74–79

    Article  CAS  Google Scholar 

  47. Kwon Y, Kim M et al (2012) Enhanced ethanol sensing properties of TiO2 nanotube sensors. Sens Actuator B: Chem 173:441–446

    Article  CAS  Google Scholar 

  48. Fan Y, Liu J, Lu H, Zhang Q (2011) Electrochemical behaviour and voltammetric determination of paracetamol at nafion/TiO2-graphene modified glassy carbon electrode. Coll Surf B: Biointerfaces 85:289–292

    Article  CAS  Google Scholar 

  49. Sun J, Huang K et al (2011) Direct electrochemistry and electrocatalysis of haemoglobin on chitosan-room temperature ionic liquid-TiO2-graphene nanocomposite film modified electrode. Bioelectrochemistry 82:125–130

    Article  CAS  Google Scholar 

  50. Benvenuto P, Kafi AKM, Chen A (2009) High performance glucose biosensor based on the immobilization of glucose oxidase onto modified titania nanotube. J Electroanal Chem 627:76–81

    Article  CAS  Google Scholar 

  51. Fan Y, Lu H-T et al (2011) Hydrothermal preparation and electrochemical sensing properties of TiO2-graphene nanocomposite colloids surf. B: Biointerfaces 83:78–82

    CAS  Google Scholar 

  52. Ghosh D, Giri S, Kalra S, Das CK (2012) Synthesis and characterization of TiO2 coated multiwalled carbon nanotubes/graphene/polyaniline nanocomposite for super capacitor applications 2: 70–77

  53. Abdolahi A, Hazah E et al (2012) Synthesis of uniform polyaniline nanofibres through interfacial polymerization. Mater 5:1487–1494

    Article  CAS  Google Scholar 

  54. Filipiak M (2001) Electrochemical analysis of poly phenolic compunds. Anal Sci 17:1667–1670

    Google Scholar 

  55. Dar RA, Brahman PK et al (2011) Adsorptive stripping voltammetric determination of podophyllotoxin, an antitumour herbal drug, at multi-walled carbon nanotube paste electrode. J Appl Electrochem 41:1311–1321

    Article  CAS  Google Scholar 

  56. Xing T-L, Fe W et al (2009) Electrochemical behaviour of apigenin at a glassy carbon electrode and its analytical application. J Chin Chem Soc 56:303–309

    Article  CAS  Google Scholar 

  57. Hedge RN, Swamy BEK, Sherigara BS, Nandibewoor ST (2008) Electrooxidation of atenolol at a glassy carbon electrode. Int J Electrochem Sci 3:302–314

    Google Scholar 

  58. Goyal RN, Gupta VK, Oyama M, Bachheti N (2006) Differential pulse voltammetric determination of atenolol in pharmaceutical formulations and urine using nanogold modified indium tin oxide electrode. Electrochem Commun 8(1):65–70

    Article  CAS  Google Scholar 

  59. Brown ER, Large RF, In: Weissberger A, Rossiter BW (eds) (1964) Physical methods of chemistry. Wiley Interscience Rochester p423

  60. Bard AJ, Faulkner LR (1980) Electroahemical methods, fundamentals and applications. Wiley, New York, p 522

    Google Scholar 

  61. Liu J-X, Wu YJ et al (2008) Adsorptive voltammetric behaviour of resveratrol at graphite electrode and its determination in tablet dosage form. J Chin Chem Soc 55:264–270

    Article  CAS  Google Scholar 

  62. Scholz F (2002) Electroanalytical methods. Springer, Verlag, pp 78–319

    Google Scholar 

  63. Erk N, Voltammetric behaviour and determination of moxifloxacin in pharmaceutical products and human plasma. Anal Bioanal Chem 378:1351–1356

Download references

Acknowledgments

Authors acknowledge the central facility, department of Indian Institute of Technology, New Delhi, India, for carrying out SEM characterization. They are thankful to the UGC-BSR for the fellowship to two of the authors (Ratnanjali Shrivastava and Sachin Saxena).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soami P. Satsangee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, R., Saxena, S., Satsangee, S.P. et al. Graphene/TiO2/polyaniline nanocomposite based sensor for the electrochemical investigation of aripiprazole in pharmaceutical formulation. Ionics 21, 2039–2049 (2015). https://doi.org/10.1007/s11581-014-1353-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1353-3

Keywords

Navigation