Skip to main content
Log in

Studies on biodegradable polymer electrolyte rice starch (RS) complexed with lithium iodide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biodegradable and natural rice starch (RS) polymer with lithium iodide salt (LiI) was used to prepare polymer electrolytes using solution cast technique. Polymer electrolyte films were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). TGA and DSC thermograms demonstrate that decomposition temperature (Tdc) and glass transition temperature (Tg) for rice starch shift upon complexation with lithium iodide salt. Thermolysis studies using TGA show decomposition temperature decreases with the addition of lithium iodide salt. XRD patterns show increase in amorphous behavior with doping of lithium iodide salt. The morphology studies were observed using SEM in terms of smoothness and miscibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choudhury NA, Ma J, Sahai Y (2012) High-performance and eco-friendly chitosan hydrogel membrane electrolytes for direct borohydride fuel cells. J Power Sources 210:358–365

    Article  CAS  Google Scholar 

  2. Khanmrzaei MH, Ramesh S (2013) Ionic transport and FTIR properties of lithium iodide doped biodegradable rice starch based polymer electrolytes. Int J Electrochem Sci 8(7):9977–9991

    Google Scholar 

  3. Lenz, R. (1993). Biodegradable polymers. In R. Langer & N. Peppas (Eds.). Biopolymers I (Vol. 107, pp. 1–40): Springer Berlin Heidelberg.

  4. Liew CW, Ramesh S, Ramesh K, Arof AK (2012) Preparation and characterization of lithium ion conducting ionic liquid-based biodegradable corn starch polymer electrolytes. J Solid State Electrochem 16(5):1869–1875

    Article  CAS  Google Scholar 

  5. Lin CW, Liang SS, Chen SW, Lai JT (2013) Sorption and transport properties of 2-acrylamido-2-methyl-1-propanesulfonic acid-grafted bacterial cellulose membranes for fuel cell application. J Power Sources 232:297–305

    Article  CAS  Google Scholar 

  6. Liu Y, Du BX, Du DM (2013) Pattern analysis on dielectric breakdown characteristics of biodegradable polyethylene film under nonuniform electric field. Int Trans Electr Energy Syst 23(1):72–82

    Article  Google Scholar 

  7. Lörcks J (1998) Properties and applications of compostable starch-based plastic material. Polym Degrad Stab 59(1–3):245–249

    Article  Google Scholar 

  8. Ma J, Sahai Y (2013) Chitosan biopolymer for fuel cell applications. Carbohydr Polym 92(2):955–975

    Article  CAS  Google Scholar 

  9. Manindra Kumar TT, Srivastava N (2012) Electrical transport behavior of bio-polymer electrolyte system: potato starch + ammonium iodide. Carbohydr Polym 88(1):54–60

    Article  Google Scholar 

  10. Maurizio Avella JJDV, Errico ME, Fischer S, Vacca P, Volpe MG (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93(3):467–474

    Article  Google Scholar 

  11. Narpinder Singh JS, Kaur L, Sodhi NS, Gill BS (2003) Morphological, thermal, and rheological properties of starches from different botanical sources. Food Chem 81(2):219–231

    Article  Google Scholar 

  12. Rahul Singh NAJ, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydr Polym 91(2):682–685

    Article  Google Scholar 

  13. Ramesh S, Shanti R, Morris E (2013) Employment of Amim Cl in the effort to upgrade the properties of cellulose acetate based polymer electrolytes. Cellulose 20(3):1377–1389

    Article  CAS  Google Scholar 

  14. Singh R, Jadhav NA, Majumder S, Bhattacharya B, Singh PK (2013) Novel biopolymer gel electrolyte for dye-sensitized solar cell application. Carbohydr Polym 91(2):682–685

    Article  CAS  Google Scholar 

  15. Sownthari K, Suthanthiraraj SA (2013) Synthesis and characterization of an electrolyte system based on a biodegradable polymer. Express Polym Lett 7(6):495–504

    Article  CAS  Google Scholar 

  16. Sudhakar YN, Selvakumar M, Bhat DK (2013) LiClO4-doped plasticized chitosan and poly(ethylene glycol) blend as biodegradable polymer electrolyte for supercapacitors. Ionics 19(2):277–285

    Article  CAS  Google Scholar 

  17. Yoichi Tominaga, S. A., Masao Sumita, Stefania Panero, Bruno Scrosati. (2005). A novel composite polymer electrolyte: effect of mesoporous SiO2 on ionic conduction in poly(ethylene oxide)–LiCF3SO3 complex. Journal of Power Sources, 146(1–2), 402-404-406.

    Google Scholar 

  18. Zhang C, Zhu L, Shao K, Gu M, Liu Q (2013) Toward underlying reasons for rice starches having low viscosity and high amylose: physiochemical and structural characteristics. J Sci Food Agric 93(7):1543–1551

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M. H. Khanmirzaei acknowledges the University of Malaya Bright Sparks Scheme (SBSUM) for the financial support (BSP 221(3)-12). This work was supported by the University of Malaya Research Grant (UMRG Program: RP001-2013A) and PPP Grant (PG105-2012B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanmirzaei, M.H., Ramesh, S. Studies on biodegradable polymer electrolyte rice starch (RS) complexed with lithium iodide. Ionics 20, 691–695 (2014). https://doi.org/10.1007/s11581-013-1031-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1031-x

Keywords

Navigation