Skip to main content
Log in

Effect of milling time on the performance of bowl-like LiFePO4/C prepared by wet milling-assisted spray drying

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

LiFePO4/C was prepared by wet milling-assisted spray drying. The effects of ball-milling time on the characteristics of LiFePO4/C were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller analysis, cyclic voltammograms, electrochemical impedance spectra, and galvanostatic charge–discharge testing. Bowl-like material was obtained, surrounded by a network of carbon, which display larger specific surface area. The specific surface area of particle first increased and then decreased, as the increasing of ball-milling time; when ball-milling time reach 2.5 h, it showed the largest specific surface area of 29.350 m2 g−1, primary particles with size of ∼50 nm, delivered a discharge capacity of 162 mAh g−1 at 0.5 C and 123 mAh g−1 at 10 C, and with no capacity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  2. Ju SY, Peng HR, Li GC, Chen KZ (2012) Synthesis and electrochemical properties of LiFePO4 single-crystalline nanoplates dominated with bc-planes. Mater Lett 74:22

    Article  CAS  Google Scholar 

  3. Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180

    Article  CAS  Google Scholar 

  4. Wong HC, Carey JR, Chen JS (2010) Physical and electrochemical properties of LiFePO4/C composite cathode prepared from aromatic diketone-containing precursors. J Electrochem Soc 5:1090

    CAS  Google Scholar 

  5. Zhang SS, Xu K, Jow TR (2006) An improved electrolyte for the LiFePO4 cathode working in a wide temperature range. J Power Sources 159:702

    Article  CAS  Google Scholar 

  6. Shi SQ, Liu LJ, Ouyang CY, Wang DS, Wang ZX, Chen LQ, Huang XJ (2003) Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 68:195108

    Article  CAS  Google Scholar 

  7. Choi DW, Kumta PN (2007) Surfactant based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064

    Article  CAS  Google Scholar 

  8. Kuwahara A, Suzuki S, Miyayama M (2008) High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceram Int 34:863

    Article  CAS  Google Scholar 

  9. Hsu KF, Tsay SY, Hwang BJ (2004) Synthesis and characterization of nanosized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. Mater Chem 14:2690

    Article  CAS  Google Scholar 

  10. Shenouda AY, Liu HK (2009) Studies on electrochemical behavior of zinc-doped LiFePO4 for lithium battery positive electrode. J Alloys Compd 477:498

    Article  CAS  Google Scholar 

  11. Zhang D, Cai R, Zhou YK, Shao ZP, Liao XZ, Ma ZF (2010) Effect of milling method and time on the properties and electrochemical performance of LiFePO4/C composites prepared by ball milling and thermal treatment. Electrochim Acta 55:2653

    Article  CAS  Google Scholar 

  12. Nandiyanto ABD, Okuyama K (2011) Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges. Adv Powder Technol 22:1

    Article  CAS  Google Scholar 

  13. Konarova M, Taniguchi I (2009) Preparation of carbon coated LiFePO4 by a combination of spray pyrolysis with planetary ball-milling followed by heat treatment and their electrochemical properties. Powder Technol 191:111

    Article  CAS  Google Scholar 

  14. Doan TNL, Bakenov Z, Taniguchi I (2010) Preparation of carbon coated LiMnPO4 powders by a combination of spray pyrolysis with dry ball-milling followed by heat treatment. Adv Powder Technol 21:187

    Article  CAS  Google Scholar 

  15. Fey GTK, Chen YG, Kao HM (2009) Electrochemical properties of LiFePO4 prepared via ball milling. J Power Sources 189:169

    Article  CAS  Google Scholar 

  16. Konarova M, Taniguchi I (2010) Synthesis of carbon-coated LiFePO4 nanoparticles with high-rate performance in lithium secondary batteries. J Power Sources 195:3661

    Article  CAS  Google Scholar 

  17. Tang ZY, Gao F, Xue JJ (2007) Effects of ball milling on the preparation of LiFePO4 cathode material for lithium-ion batteries. Chin J Inorg Chem 23:1415

    CAS  Google Scholar 

  18. Wu CY, Cao GS, Yu HM, Xie J, Zhao XB (2011) In situ synthesis of LiFePO4/carbon fiber composite by chemical vapor deposition with improved electrochemical performance. J Phys Chem C 115:23090

    Article  CAS  Google Scholar 

  19. Gao F, Tang ZY, Xue JJ (2007) Preparation and characterization of nanoparticle LiFePO4 and LiFePO4/C by spray-drying and post-annealing method. Electrochim Acta 53:1939

    Article  CAS  Google Scholar 

  20. Zhang Y, Huo QY, Du PP, Wang LZ, Zhang AQ, Song YH, Lv Y, Li GY (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synthetic Met 162:1315

    Article  CAS  Google Scholar 

  21. Jugović D, Uskoković D (2009) A review of recent developments in the synthesis procedures of lithium iron phosphate powders. J Power Sources 190:538

    Article  CAS  Google Scholar 

  22. Vu A, Qian Y, Stein A (2012) Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Adv Energy Mater 9:1056

    Article  CAS  Google Scholar 

  23. Ait-Salah A, Zaghib K, Mauger A, Gendron F, Julien CM (2006) Magnetic studies of the carbothermal effect on LiFePO4. Phys Stat Sol (a) 203:R1

    Article  CAS  Google Scholar 

  24. Zhang D, Yu X, Wang YF, Cai R, Shao ZP, Liao XZ, Ma ZF (2009) Ball milling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor. Electrochem Soc 156:A802

    Article  CAS  Google Scholar 

  25. Wang L, Liang GC, Ou XQ, Zhi XK, Zhang JP, Cui JY (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189:423

    Article  CAS  Google Scholar 

  26. Kim JK, Cheruvally G, Ahn JH, Hwang GC, Choi JB (2008) Electrochemical properties of carbon-coated LiFePO4 synthesized by a modified mechanical activation process. J Phys Chem Solids 69:2371

    Article  CAS  Google Scholar 

  27. Andersson AS, Thomas JO (2001) The source of first-cycle capacity loss in LiFePO4. J Power Sources 97–98:498

    Article  Google Scholar 

  28. Liu QB, Liao SJ, Song HY, Liang ZX (2012) High-performance LiFePO4/C materials effect of carbon source on microstructure and performance. J Power Sources 211:52

    Article  CAS  Google Scholar 

  29. Dominko R, Bele M, Goupil JM, Gaberscek M, Hanzel D, Arcon I, Jamnik J (2007) Wired porous cathode materials: a novel concept for synthesis of LiFePO4. Chem Mater 19:2960

    Article  CAS  Google Scholar 

  30. Hu YS, Guo YG, Dominko R, Gaberscek M, Jamnik J (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. J Maier, Advance Materials 19:1963

    Article  CAS  Google Scholar 

  31. Choi D, Kumta PN (2007) Surfactant-based sol–gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064

    Article  CAS  Google Scholar 

  32. Hamid NA, Wennig S, Hardt S, Heinzel A, Schulz C, Wiggers H (2012) High-capacity cathodes for lithium-ion batteries from nanostructured LiFePO4 synthesized by highly-flexible and scalable flame spray pyrolysis. J Power Sources 216:76

    Article  CAS  Google Scholar 

  33. Deng HG, Jin SL, Zhan L, Qiao WM, Ling LC (2012) Nest-like LiFePO4/C architectures for high performance lithium ion batteries. Electrochim Acta 78:633

    Article  CAS  Google Scholar 

  34. Yin YH, Gao MX, Ding JL, Liu YF, Shen LK, Pan HG (2011) A carbon-free LiFePO4 cathode material of high-rate capability prepared by a mechanical activation method. J Phys Chem Solids 509:10161

    CAS  Google Scholar 

  35. Shenouda AY, Liu HK (2008) Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode. J Power Sources 185:1386

    Article  CAS  Google Scholar 

  36. Iskandar F, Gradon L, Okuyama K (2003) Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. J Colloid Interf Sci 265:296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the National Natural Science Foundation of China (21366006) and the Nature Science Foundation of Guangxi, China (2011GXNSFA018015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Xuan Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, YJ., Su, J., Long, YF. et al. Effect of milling time on the performance of bowl-like LiFePO4/C prepared by wet milling-assisted spray drying. Ionics 20, 471–478 (2014). https://doi.org/10.1007/s11581-013-1002-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-1002-2

Keywords

Navigation