Skip to main content
Log in

Improvement of cycling stability of LiMn2O4 cathode by Fe2O3 surface modification for Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The surface of spinel LiMn2O4 was modified with Fe2O3 (1.0, 2.0, 3.0, 4.0, and 5.0 wt%) by a simple sol-gel method to improve its electrochemical performance at room temperature. Compared with bare LiMn2O4, surface modification improved cycling stability of the material. Among the surface-modified cathode materials, the 3.0- and 4.0-wt% surface-modified cathodes have lesser capacity loss than the others. While the bare LiMn2O4 showed 25.4 % capacity loss in 70 cycles at room temperature, 3.0 and 4.0 wt% of Fe2O3-modified LiMn2O4 only exhibited the capacity loss of 2.6 and 2.3 % in 70 cycles at room temperature, respectively. The structure and phase were identified with X-ray diffractometer along with the lattice constant calculated by a Win-Metric program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Linden D, Reddy TB (2002) Handbook of batteries, 3rd edn. McGraw-Hill Inc, New York

    Google Scholar 

  2. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  3. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  4. Ronci F, Scrosati B, Rossi A, Perfetti P (2001) J Phys Chem B 105:754–759

    Article  CAS  Google Scholar 

  5. Amatucci GG, Pereira N, Zheng T, Plitz I, Tarascon JM (1999) J Power Sources 81–82:39–43

    Article  Google Scholar 

  6. Tsai YW, Santhanam R, Hwang BJ, Hu SK, Sheu HS (2003) J Power Sources 119–121:701–705

    Article  Google Scholar 

  7. Liu W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143:879–884

    Article  CAS  Google Scholar 

  8. Im D, Manthiram A (2003) J Electrochem Soc 150:A742–A746

    Article  CAS  Google Scholar 

  9. Kanamura K, Naito H, Yao T, Takehara Z (1996) J Mater Chem 6:33–36

    Article  CAS  Google Scholar 

  10. Oikawa K, Kamiyama T, Izumi F, Chakoumakos BC, Ikuta H, Wakihara M, Li JQ, Matsui Y (1998) Solid State Ion 109:35–41

    Article  CAS  Google Scholar 

  11. Song MY, Ahn DS, Park HR (1999) J Power Sources 83:57–60

    Article  CAS  Google Scholar 

  12. Sun YK, Jeon YS, Lee HJ (2000) Electrochem Solid-State Lett 3:7–10

    Article  CAS  Google Scholar 

  13. Benedek R, Thackeray MM (2006) Electrochem. Solid State Lett 9:A265–267

    Article  CAS  Google Scholar 

  14. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) J Power Sources 165:491–499

    Article  CAS  Google Scholar 

  15. Nakayama N, Nozawa T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) J Power Sources 174:695–700

    Article  CAS  Google Scholar 

  16. Ouyang CY, Shi SQ, Lei MS (2009) J Alloys Compd 474:370–374

    Article  CAS  Google Scholar 

  17. Sun YK, Kim DW, Choi YM (1999) J Power Sources 79:231–237

    Article  CAS  Google Scholar 

  18. Shi S, Ouyung C, Wang DS, Chen L (2003) Solid State Commun 126:531–534

    Article  CAS  Google Scholar 

  19. Dokko K, Hovikoshi S, Itoh T, Nishizawa M, Mohamedi M (2000) J Power Sources 90:109–115

    Article  CAS  Google Scholar 

  20. Hosoya M, Ikuta H, Wakihara M (1998) Solid State Ion 111:153–159

    Article  CAS  Google Scholar 

  21. Bang HJ, Donepudi VS, Prakash J (2002) Electrochim Acta 48:443–451

    Article  CAS  Google Scholar 

  22. Amine K, Tukamoto H, Yasuda H, Fujita Y (1997) J Power Sources 68:604–608

    Article  CAS  Google Scholar 

  23. Komaba S, Oikawa K, Myung S-T, Kumagai N, Kamiyama T (2002) Solid State Ion 149:47–52

    Article  CAS  Google Scholar 

  24. Amatucci GG, Blyr A, Sigala C, Alfonse P, Tarascon JM (1997) Solid State Ion 104:13–25

    Article  CAS  Google Scholar 

  25. Şahan H, Göktepe H, Patat Ş, Ülgen A (2008) Solid State Ion 178:1837–1842

    Article  Google Scholar 

  26. Lee SW, Kim KS, Moon HS, Kim HJ, Cho BW (2004) J Power Sources 126:150–155

    Article  CAS  Google Scholar 

  27. Şahan H, Göktepe H, Patat Ş, Ülgen A (2010) Solid State Ion 18:1437–1444

    Google Scholar 

  28. Alcantara R, Jaraba M, Larcla P, Tirado JL (2004) J Electroanal Chem 566:187–192

    Article  CAS  Google Scholar 

  29. Tu J, Zhao XB, Xie J, Cao GS, Zhuang DG (2007) J Alloy Compd 432:313–317

    Article  CAS  Google Scholar 

  30. Yu L, Qiu X, Xi J, Zhu W, Chen L (2006) Electrochim Acta 51:6406–6411

    Article  CAS  Google Scholar 

  31. Eftekhari A (2004) J Power Sources 130:260–265

    Article  CAS  Google Scholar 

  32. Cho J, Kim YW, Kim B, Park B (2003) Chem, Int Ed 42:1618–1621

    Article  CAS  Google Scholar 

  33. Liu D, He Z, Liu X (2007) Mater Lett 61:4703–4706

    Article  CAS  Google Scholar 

  34. Ha HW, Yan NJ, Kim K (2007) Electrochim Acta 52:3236–3241

    Article  CAS  Google Scholar 

  35. Sun YC, Wang ZX, Huang XJ (2003) J Electrochem Soc 150:A1294–A1298

    Article  CAS  Google Scholar 

  36. Arumugam D, Kalaignan GP (2008) J Electroanal Chem 624:197–204

    Article  CAS  Google Scholar 

  37. Lim S, Cho J (2008) Electrochem Commun 10:1478–1481

    Article  CAS  Google Scholar 

  38. Lee KS, Myung ST, Bang H, Amine K, Kim DW, Sun YK (2009) J Power Sources 189:494–498

    Article  CAS  Google Scholar 

  39. Şahan H, Göktepe H, Patat S, Ülgen A (2011) J Alloys Compd 509:4235–4241

    Article  Google Scholar 

  40. Şahan H, Göktepe H, Patat S (2011) J Mater Sci Technol 27:415–420

    Article  Google Scholar 

  41. Groysman A (2010) Corrosion for everybody. Springer, New York

    Book  Google Scholar 

  42. Zhang Y, Shin HC, Dong J, Liu M (2004) Solid State Ion 171:25–31

    Article  CAS  Google Scholar 

  43. Armarego WLF, Perrin DD (2002) Purification of laboratory chemicals, 4th edn. Butterworth Heinemann, Oxford

    Google Scholar 

  44. Cho NW, Chang S, Sung HP (1997) RIST Yongu Nonmun 11:622

    CAS  Google Scholar 

  45. Shannon RD (1976) Acta Cryst A32:751–767

    Article  CAS  Google Scholar 

  46. Ohzuku T, Ariyoshi K, Takeda S, Sakai Y (2001) Electrochim Acta 46:2327–2336

    Article  CAS  Google Scholar 

  47. Kanoh H, Tang W, Ooi K (1998) Electrochem Solid-State Lett 1:17

    Article  CAS  Google Scholar 

  48. Julien CM, Massot M (2003) Mater Sci Eng B97:217–230

    Article  CAS  Google Scholar 

  49. Sigala C, Guyomard D, Verbaere A, Piffard Y, Tournoux M (1995) Solid State Ion 81:167–170

    Article  CAS  Google Scholar 

  50. Arumugam D, Paruthimal G, Kalaignan P (2010) Mater Res Bull 45:1825–1831

    Article  CAS  Google Scholar 

  51. Park SB, Shin HC, Lee WG, Cho W, Jang H (2008) J Power Sources 180:597–601

    Article  CAS  Google Scholar 

  52. Lee SW, Kim KS, Lee KL, Moon HS, Kim HJ, Cho BW, Cho W, Park JW (2004) J Power Sources 130:233–240

    Article  CAS  Google Scholar 

  53. Jang DH, Shin YJ, Oh SM (1996) J Electrochem Soc 143:2204–2211

    Article  CAS  Google Scholar 

  54. Xia Y, Zhou Y, Yoshio M (1997) J Electrochem Soc 144:2593–2600

    Article  CAS  Google Scholar 

  55. Myung ST, Izumi K, Komaba S, Sun YK, Yashiro H, Kumagai N (2005) Chem Mater 7:3695–3704

    Article  Google Scholar 

  56. Myung ST, Hosoya K, Komaba S, Yashiro H (2006) Electrochim Acta 51:5912–5919

    Article  CAS  Google Scholar 

  57. Tarascon JM, Kinnon RC, Coowar F, Bowmer TN (1997) J Electrochem Soc 141:1421–1433

    Article  Google Scholar 

  58. Li C, Zhang HP, Fu LJ, Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2006) Electrochim Acta 51:3872–3883

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Research Foundation of Erciyes University (FBA-08-439) and International Post Doctoral Research Fellowship Programme (2219) of The Scientific and Technological Research Council of Turkey. The authors would like to thank Mr. İhsan Akşit for the SEM observation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Halil Şahan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şahan, H., Dokan, F.K., Ülgen, A. et al. Improvement of cycling stability of LiMn2O4 cathode by Fe2O3 surface modification for Li-ion battery. Ionics 20, 323–333 (2014). https://doi.org/10.1007/s11581-013-0987-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0987-x

Keywords

Navigation