Skip to main content
Log in

Selective determination of catecholamine in the presence of ascorbic acid or uric acid on the membrane of silver nanoparticles/poly l-phenylalanine

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The silver ions and l-phenylalanine were co-deposited and formed a hybrid membrane on the surface of glassy carbon electrode by cyclic voltammetry. The membrane had good properties for catalyzing the redox of catecholamine neurotransmitters, including epinephrine (EP), norepinephrine (NE), and dopamine (DA). The electrochemical behaviors of these neurotransmitters were studied on this modified electrode. and therefore, an assay for each of them is set up and the detection limits for EP, NE, and DA are 7.2 × 10−9, 6.4 × 10−9, and 8.5 × 10−9 mol L−1, respectively. The proposed method can effectively eliminate the interference of the ascorbic acid and uric acid. The conditions which influenced the analyses were optimized. Using this method to determine the content of EP, NE, and DA in injections, the results were satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Da Silva RP, Lima AWO, Serrano SHP (2008) Anal Chim Acta 612:89

    Article  Google Scholar 

  2. Wightman RM, May LJ (1988) Anal Chem 60:769A

    CAS  Google Scholar 

  3. Mo JW, Ogorevc B (2001) Anal Chem 73:1196

    Article  CAS  Google Scholar 

  4. Alpat S, Alpat SK, Telefoncu A (2005) Anal Bioanal Chem 383:695

    Article  CAS  Google Scholar 

  5. Raoof JB, Kiani A, Ojani R, Valiollahi R, Rashid-Nadimi S (2010) J Solid State Electrochem 14:1171

    Article  CAS  Google Scholar 

  6. Patric GL (2005) An introduction to medical chemistry. Oxford University Press, New York

    Google Scholar 

  7. Stamford JA, Justice JB (1996) Anal Chem 63:359A

    Article  Google Scholar 

  8. Hironori T, Mikio T, Nobuhiko T, Toru K, Hideki Y, Tokishi H (1987) J Pharmacolog Meth 17:263

    Article  Google Scholar 

  9. Guan CL, Ouyang J, Li QL, Liu BH (2000) Talanta 50:1197

    Article  CAS  Google Scholar 

  10. Sorouraddin MH, Manzoori JL, Kargarzadeh E, Haji Shabani AM (1998) J Pharmaceu Biomed Anal 18:877

    Article  CAS  Google Scholar 

  11. Zhu M, Huang XM, Li J, Shen HX (1997) Anal Chim Acta 357:261

    Article  CAS  Google Scholar 

  12. Xu XD, Zhang HY, Shi HM, Ma CL, Cong B, Kang WJ (2012) Anal Biochem 427:10

    Article  CAS  Google Scholar 

  13. Gamal HR, Hitoshi N, Kiyoshi Z (2000) Anal Chim Acta 403:155

    Article  Google Scholar 

  14. Bérengère C, Reine N, Philippe M (2011) Anal Chim Acta 699:242

    Article  Google Scholar 

  15. Heli S, Marjo M, Mare H (2004) J Chromatogr A 1032:289

    Article  Google Scholar 

  16. Michelle H, Lung-Sen K, David JC, Edward WW (1985) Anal Biochem 144:218

    Article  Google Scholar 

  17. Nada FA, Maher FE (2009) Talanta 79:639

    Article  Google Scholar 

  18. Igor AG, Kevin PMC, Franz B (2012) Biosens Bioelectcron 34:30

    Article  Google Scholar 

  19. Leonard S, Annika L, Tautgirdas R, Lo G (2004) Anal Chem 76:4690

    Article  Google Scholar 

  20. Cao XH, Zhang LX, Cai WP, Li YQ (2010) Electrochem Commun 12:540

    Article  CAS  Google Scholar 

  21. Zhu F, Yan JW, Sun CF, Zhang X, Mao BW (2010) J Electroanal Chem 640:51

    Article  CAS  Google Scholar 

  22. Teresa Ł (2009) Electrochim Acta 54:5863

    Article  Google Scholar 

  23. Lin XQ, Zhang L (2001) Anal Lett 34:1585

    Article  CAS  Google Scholar 

  24. Yu ZY, Li XC, Wang XL, Li JJ, Cao KW (2011) Int J Electrochem Sci 6:3890

    CAS  Google Scholar 

  25. Yu ZY, Li XC, Wang XL, Ma XY, Li X, Cao KW (2012) J Chem Sci 124:537

    Article  CAS  Google Scholar 

  26. Li X, Chen MF, Ma XY (2012) Anal Sci 28:147

    Article  Google Scholar 

  27. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2002) Electroanalysis 14:225

    Article  CAS  Google Scholar 

  28. Goyal RN, Aziz MA, Oyama M, Chatterjee S, Rana ARS (2011) Sensors Actuators B 153:232

    Article  CAS  Google Scholar 

  29. Li CY, Cai YJ, Yang CH, Wu CH, Wei Y, Wen TC, Wang TL, Shieh YT, Lin WC, Chen WJ (2011) Electrochim Acta 56:1955

    Article  CAS  Google Scholar 

  30. Zhang L, Lin X (2005) Anal Bioanal Chem 382:1669

    Article  CAS  Google Scholar 

  31. Ma W, Sun DM (2007) Acta Phys Chim Sin 23:332

    CAS  Google Scholar 

  32. Jiang C, Yang T, Jiao K, Gao HW (2008) Electrochim Acta 53:2917

    Article  CAS  Google Scholar 

  33. Nada FA, Maher FE (2010) Sensors Actuators B 145:299

    Article  Google Scholar 

  34. Lee Y, Park J, Jun Y, Kim D, Lee JJ, Kim YC, Oh SG (2008) Synth Met 158:143

    Article  CAS  Google Scholar 

  35. Ma XY, Wang ZX, Wang XL, Xu LP (2013) J Solid State Electrochem 17:661

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation Committee of Shandong Province, China (no. ZR2009BM003), the National Natural Science Foundation of China (21105023), and China Postdoctoral Science Foundation Funded Project (no. 200902558; no. 20080430193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhangyu Yu.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 57 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, M., Cao, K., Wang, X. et al. Selective determination of catecholamine in the presence of ascorbic acid or uric acid on the membrane of silver nanoparticles/poly l-phenylalanine. Ionics 19, 1891–1896 (2013). https://doi.org/10.1007/s11581-013-0946-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0946-6

Keywords

Navigation