Skip to main content
Log in

One-pot synthesis and electrochemical property of MnO/C hybrid microspheres

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this paper, we reported a one-pot method to synthesize MnO/C hybrid microspheres via solvothermal approach for the first time. Only peaks of MnO could be observed from X-ray diffractometry patterns, indicating that the carbon in the composite was amorphous. Scanning electron microscope and transmission electron microscopy images showed that the surfaces of these as-prepared spheres were relatively smooth and of about 2.2 μm in diameter. Electrochemical property demonstrated that the annealed MnO/C hybrid microspheres possessed higher reversible capacity and cycling stability than that of MnO nanoparticles. The annealed MnO/C hybrid microspheres exhibited a large initial charge capacity of 856 mAh g−1, and the stabilized capacity was as high as 601 mAh g−1 after 30 cycles. These improvements can be ascribed to the amorphous carbon, which can enhance the conductivity of MnO, suppress the aggregation of active particles, and increase their structural stability during cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang B, Wu XL, Shu CY, Guo YG, Wang CR (2010) Synthesis of CuO/graphene nanocomposite as a high-performance anode material for lithium-ion batteries. J Mater Chem 20:10661–10664

    Article  CAS  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  3. Li H, Wang ZX, Chen LQ, Huang XJ (2009) Research on advanced materials for Li-ion batteries. Adv Mater 21:4593–4607

    Article  Google Scholar 

  4. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  5. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2002) Rationalization of the low-potential reactivity of 3d-metal-based inorganic compounds toward Li. J Electrochem Soc 149:A1212–A1217

    Article  CAS  Google Scholar 

  6. Liu H, Wexler D, Wang GX (2009) One-pot facile synthesis of iron oxide nanowires as high capacity anode materials for lithium ion batteries. J Alloys Compd 487:L24–L27

    Article  CAS  Google Scholar 

  7. Zhu JX, Sharma YK, Zeng ZY, Zhang XJ, Srinivasan M, Mhaisalkar S, Zhang H, Hng HH, Yan QY (2011) Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J Phys Chem C 115:8400–8406

    Article  CAS  Google Scholar 

  8. Wang Y, Xia H, Lu L, Lin JY (2010) Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 4:1425–1432

    Article  CAS  Google Scholar 

  9. Varghese B, Reddy MV, Zhu YW, Lit CS, Hoong TC, Rao GVS, Chowdari BVR, Wee ATS, Lim CT, Sow CH (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20:3360–3367

    Article  CAS  Google Scholar 

  10. Chen CH, Hwang BJ, Do JS, Weng JH, Venkateswarlu M, Cheng MY, Santhanam R, Ragavendran K, Lee JF, Chen JM, Liu DG (2010) An understanding of anomalous capacity of nano-sized CoO anode for advanced Li-ion battery. Electrochem Commun 12:496–498

    Article  CAS  Google Scholar 

  11. Wang L, Zhao Y, Lai QY, Hao YJ (2010) Preparation of 3D rose-like NiO complex structure and its electrochemical property. J Alloys Compd 495:82–87

    Article  CAS  Google Scholar 

  12. Ryu J, Kim SW, Kang K, Park CB (2010) Synthesis of diphenylalanine/cobalt oxide hybrid nanowires and their application to energy storage. ACS Nano 4:159–164

    Article  CAS  Google Scholar 

  13. Li J, Dahn HM, Krause LJ, Le DB, Dahn JR (2008) Impact of binder choice on the performance of alpha-Fe2O3 as a negative electrode. J Electrochem Soc 155:A812–A816

    Article  CAS  Google Scholar 

  14. Wang L, Xu HW, Chen PC, Zhang DW, Ding CX, Chen CH (2009) Electrostatic spray deposition of porous Fe2O3 thin films as anode material with improved electrochemical performance for lithium-ion batteries. J Power Sources 193:846–850

    Article  CAS  Google Scholar 

  15. Qiao H, Xiao LF, Zheng Z, Liu HW, Jia FL, Zhang LZ (2008) One-pot synthesis of CoO/C hybrid microspheres as anode materials for lithium-ion batteries. J Power Sources 185:486–491

    Article  CAS  Google Scholar 

  16. Rahman MM, Chou SL, Zhong C, Wang JZ, Wexler D, Liu HK (2010) Spray pyrolyzed NiO–C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention. Solid State Ionics 180:1646–1651

    Article  CAS  Google Scholar 

  17. Huang XH, Tu JP, Zhang CQ, Xiang JY (2007) Net-structured NiO–C nanocomposite as Li-intercalation electrode material. Electrochem Commun 9:1180–1184

    Article  CAS  Google Scholar 

  18. Hassan MF, Rahman MM, Guo ZP, Chen ZX, Liu HK (2010) Solvent-assisted molten salt process: a new route to synthesise alpha-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochim Acta 55:5006–5013

    Article  CAS  Google Scholar 

  19. Zhu XJ, Zhu YW, Murali S, Stoller MD, Ruoff RS (2011) Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

  20. Yu WJ, Hou PX, Zhang LL, Li F, Liu C, Cheng HM (2010) Preparation and electrochemical property of Fe2O3 nanoparticles-filled carbon nanotubes. Chem Commun 46:8576–8578

    Article  CAS  Google Scholar 

  21. Hsieh CT, Lin CY, Lin JY (2011) High reversibility of Li intercalation and de-intercalation in MnO-attached graphene anodes for Li-ion batteries. Electrochim Acta 56:8861–8867

    Article  CAS  Google Scholar 

  22. Liu YM, Zhao XY, Li F, Xia DG (2011) Facile synthesis of MnO/C anode materials for lithium-ion batteries. Electrochim Acta 56:6448–6452

    Article  CAS  Google Scholar 

  23. Liu J, Pan QM (2010) MnO/C nanocomposites as high capacity anode materials for Li-ion batteries. Electrochem Solid-State Lett 13:A139–A142

    Article  CAS  Google Scholar 

  24. Hao Q, Xua LQ, Li GD, Ju ZC, Sun CH, Ma HY, Qian YT (2011) Synthesis of MnO/C composites through a solid state reaction and their transformation into MnO2 nanorods. J Alloys Compd 509:6217–6221

    Article  CAS  Google Scholar 

  25. Sun XM, Liu JF, Li YD (2006) Oxides@C core–shell nanostructures: one-pot synthesis, rational conversion, and Li storage property. Chem Mater 18:3486–3494

    Article  CAS  Google Scholar 

  26. Qiao H, Wu N, Huang FL, Cai YB, Wei QF (2010) Solvothermal synthesis of NiO/C hybrid microspheres as Li-intercalation electrode material. Mater Lett 64:1022–1024

    Article  CAS  Google Scholar 

  27. Zhong KF, Xia X, Zhang B, Li H, Wang ZX, Chen LQ (2010) MnO powder as anode active materials for lithium ion batteries. J Power Sources 195:3300–3308

    Article  CAS  Google Scholar 

  28. Sun B, Chen ZX, Kim HS, Ahn H, Wang GX (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349

    Article  CAS  Google Scholar 

  29. Ding YL, Wu CY, Yu HM, Xie J, Cao GS, Zhu TJ, Zhao XB, Zeng YW (2011) Coaxial MnO/C nanotubes as anodes for lithium-ion batteries. Electrochim Acta 56:5844–5848

    Article  CAS  Google Scholar 

  30. Qiao H, Luo QH, Fu JP, Li J, Kumar D, Cai YB, Huang FL, Wei QF (2012) Solvothermal preparation and lithium storage properties of Fe2O3/C hybrid microspheres. J Alloys Compd 513:220–223

    Article  CAS  Google Scholar 

  31. Liu J, Li W, Manthiram A (2010) Dense core–shell structured SnO2/C composites as high performance anodes for lithium ion batteries. Chem Commun 46:1437–1439

    Article  CAS  Google Scholar 

  32. Grugeon S, Laruelle S, Herrera-Urbina R, Dupont L, Poizot P, Tarascon JM (2001) Particle size effects on the electrochemical performance of copper oxides toward lithium. J Electrochem Soc 148:A285–A292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities (JUSRP11102), the National High-tech R&D Program of China (863 Program) (2012AA030313), A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, the Program for Changjiang Scholars and Innovative Research Team in University (IRT1135), and the Research Fund for the Doctoral Program of Higher Education of China (20090093110004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qufu Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiao, H., Yao, D., Cai, Y. et al. One-pot synthesis and electrochemical property of MnO/C hybrid microspheres. Ionics 19, 595–600 (2013). https://doi.org/10.1007/s11581-012-0792-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0792-y

Keywords

Navigation