Skip to main content
Log in

Proton activity of Nafion 117 membrane measured from potential difference of hydrogen electrodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The proton activity of the Nafion membrane was estimated from the potential difference between a normal hydrogen electrode (NHE) in 0.5 mol dm−3 H2SO4 and a dynamic hydrogen electrode (DHE) constructed on a Nafion 117 membrane. The potential difference between the DHE and the NHE was directly measured at the same temperature in a box chamber filled with N2 gas. As a result, the potential difference of E NHE − E DHE changes from 0.006 to −0.024 V with the increasing temperature from 289 to 313 K; however, the potential difference remains at around −0.024 V when the temperature is between 313 and 343 K. Based on these data in combination with the Nernst equation, the proton activity of the Nafion 117 membrane at 289 K is estimated to be 0.8, which increases up to ca. 2.4 with the increasing temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee W, Shibasaki A, Saito K, Sugita K, Okuyama K, Sugo T (1996) Proton transport through polyethylene-tetrafluoroethylene-copolymer-based membrane containing sulfonic acid group prepared by RIGP. J Electrochem Soc 143:2795–2799

    Article  Google Scholar 

  2. Litster S, McLean G (2004) PEM fuel cell electrodes. J Power Sources 130:61–76

    Article  CAS  Google Scholar 

  3. Koyama M, Bada K, Sasaki K, Tsuboi H, Endou A, Kubo M, Del Carpio CA, Broclawik E, Miyamoto A (2006) First-principles study on proton dissociation properties of fluorocarbon- and hydrocarbon-based membranes in low humidity conditions. J Phys Chem B 110:17872–17877

    Article  CAS  Google Scholar 

  4. Kim L, Chung CG, Sung YW, Chung JS (2008) Dissolution and migration of platinum after long-term operation of a polymer electrolyte fuel cell under various conditions. J Power Sources 183:524–532

    Article  CAS  Google Scholar 

  5. Mohammadi F, Ashrafizadeh SN, Sattari A (2009) Aqueous HCl electrolysis utilizing an oxygen reducing cathode. Chem Eng J 155:757–762

    Article  CAS  Google Scholar 

  6. Korzenowski C, Rodrigues MAS, Bresciani L, Bernardes AM, Ferreira JZ (2008) Purification of spent chromium bath by membrane electrolysis. J Hazard Mater 152:960–967

    Article  CAS  Google Scholar 

  7. Russell DG, Senior JB (1980) Studies on trifluoromethanesulfonic acid. Part 2. Conductivities of solutions of metal trifluoromethanesulfonates and other bases in trifluoromethanesulfonic acid. Can J Chem 58:22–29

    Article  CAS  Google Scholar 

  8. Sood DS, Sherman SC, Iretskii AV, Kenvin JC, Schiraldi DA, White MG (2001) The formylation of toluene in trifluoromethanesulfonic acid. J Catal 199:149–153

    Article  CAS  Google Scholar 

  9. Pizzio LR (2006) Synthesis and characterization of trifluoromethanesulfonic acid supported on mesoporous titania. Mater Lett 60:3931–3935

    Article  CAS  Google Scholar 

  10. Ota K, Nishigori S, Kamiya N (1988) Dissolution of platinum anodes in sulfuric acid solution. J Electroanal Chem 257:205–215

    Article  CAS  Google Scholar 

  11. Kodera F, Kuwahara Y, Nakazawa A, Umeda M (2007) Electrochemical corrosion of platinum electrode in concentrated sulfuric acid. J Power Sources 172:698–703

    Article  CAS  Google Scholar 

  12. Huggins RA (2000) Reference electrodes and the Gibbs phase rule. Solid State Ionics 136–137:1321–1328

    Article  Google Scholar 

  13. Nakayama S, Onishi K, Asahi T, Aung YL, Kuwata S (2009) Response characteristics of all-solid-state pH sensor using Li5YSi4O12 glass. Ceram Int 35:3057–3060

    Article  CAS  Google Scholar 

  14. Zhao R, Xu M, Wang J, Chen G (2010) A pH sensor based on the TiO2 nanotube array modified Ti electrode. Electrochim Acta 55:5647–5651

    Article  CAS  Google Scholar 

  15. Ha S, Rice CA, Masel RI, Wieckowski A (2002) Methanol conditioning for improved performance of formic acid fuel cells. J Power Sources 112:655–659

    Article  CAS  Google Scholar 

  16. Sethuraman VA, Weidner JW (2010) Analysis of sulfur poisoning on a PEM fuel cell electrode. Electrochim Acta 55:5683–5694

    Article  CAS  Google Scholar 

  17. Sondheimer SJ, Bunce NJ, Lemke ME, Fyfe CA (1986) Acidity and catalytic activity of Nafion-H. Macromolecules 19:339–343

    Article  CAS  Google Scholar 

  18. Batamack P, Fraissard J (1997) Proton NMR studies on concentrated aqueous sulfuric acid solutions and Nafion-H. Catal Lett 49:129–136

    Article  CAS  Google Scholar 

  19. Bas C, Reymond L, Danérol A-S, Albérola ND, Rossinot E, Flandin L (2009) Key counter ion parameters governing polluted Nafion membrane properties. J Polym Sci Part B: Polym Phys 47:1381–1392

    Article  CAS  Google Scholar 

  20. Seger B, Vinodgopal K, Kamat PV (2007) Proton activity in Nafion films: probing exchangeable protons with methylene blue. Langmuir 23:5471–5476

    Article  CAS  Google Scholar 

  21. Zhang G, Kandlikar SG (2012) A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrogen Energy 37:2412–2429

    Article  CAS  Google Scholar 

  22. Umeda M, Maruta T, Inoue M, Nakazawa A (2008) Cathode platinum degradation in membrane electrode assembly studied using a solid-state electrochemical cell. J Phys Chem C 112:18098–18103

    Article  CAS  Google Scholar 

  23. Inoue M, Iwasaki T, Sayama K, Umeda M (2010) Effect of conditioning method on direct methanol fuel cell performance. J Power Sources 195:5986–5989

    Article  CAS  Google Scholar 

  24. Umeda M, Sayama K, Inoue M (2011) Temperature and methanol concentration dependences of direct methanol fuel cell performance measured by single cell having reference electrode. J Renew Sust Energy 3:043107

    Article  Google Scholar 

  25. Janz GJ (1961) Silver-silver halide electrode. In: Ives DJG, Janz GJ (eds) Reference electrode theory and practice. Academic, New York, pp 179–230, Chapter 4

    Google Scholar 

  26. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, p 71

    Google Scholar 

  27. Hinatsu JT, Mizuhata M, Takenaka H (1994) Water uptake of perfluorosulfonic acid membranes from liquid water and water vapor. J Electrochem Soc 141:1493–1498

    Article  CAS  Google Scholar 

  28. Chen S-L, Xu K-Q, Dong P (2005) Preparation of three-dimensionally ordered inorganic/organic bi-continuous composite proton conducting membranes. Chem Mater 17:5880–5883

    Article  CAS  Google Scholar 

  29. Saito M, Hayamizu K, Okada T (2005) Temperature dependence of ion and water transport in perfluorinated ionomer membranes for fuel cells. J Phys Chem B 109:3112–3119

    Article  CAS  Google Scholar 

  30. Hongsirikarn K, Mo X, Goodwin JG (2010) Esterification as a diagnostic tool to predict proton conductivity affected by impurities on Nafion components for proton exchange membrane fuel cells. J Power Sources 195:3416–3424

    Article  CAS  Google Scholar 

  31. Bandyopadhyay A, Bhadra A, Swarnakar RK, Raghuwanshi NS, Singh R (2012) Estimation of reference evapotranspiration using a user-friendly decision support system: DSS_ET. Agric Forest Meteorol 154–155:19–29

    Article  Google Scholar 

  32. Sumner JJ, Creager SE, Ma JJ, DesMarteau DD (1998) Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulfonyl]imide ionomer membrane. J Electrochem Soc 145:107–110

    Article  CAS  Google Scholar 

  33. Bard AJ, Faulkner LR (1980) Electrochemical methods, fundamentals and applications. Wiley, New York, pp 49–50

    Google Scholar 

  34. Bhardwaj RC, Enayetullah MA, Bockris JO’M (1990) Proton activities in concentrated phosphoric and trifluoromethane sulfonic acid at elevated temperature in relation to acid fuel cells. J Electrochem Soc 137:2070–2076

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (B; 21360358) from the Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Umeda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umeda, M., Sayama, K., Maruta, T. et al. Proton activity of Nafion 117 membrane measured from potential difference of hydrogen electrodes. Ionics 19, 623–627 (2013). https://doi.org/10.1007/s11581-012-0791-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0791-z

Keywords

Navigation