Skip to main content
Log in

In situ FTIR investigation of adsorption properties of sub-micron Cu2O-doped RuO2 sensing electrode of planar potentiometric pH sensor

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In situ Fourier transform infrared spectroscopy (FTIR) was used to study adsorption properties of 20 mol% Cu2O-doped RuO2 sensing electrode (SE) screen-printed on the platinised alumina substrate of the planar electrochemical pH sensor and subsequently sintered at 800 °C. Morphology and properties of developed SEs were characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and FTIR techniques. It was shown that both Cu2O doping and changes in the sintering condition of the SE affected morphology and adsorption spectra of 20 mol% Cu2O-doped RuO2. Fundamental vibration frequencies of ruthenium–oxygen bond at a temperature of 23 °C as well as region above fundamental frequencies for the sub-micron 20 mol% Cu2O-doped RuO2-SE were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhuiykov S (2008) Electrochem Commun 10:839–843

    Article  CAS  Google Scholar 

  2. Zhuiykov S (2009) Sensors Actuators B Chem 136:248–256

    Article  Google Scholar 

  3. Zhuiykov S (2009) Ionics 15:693–701

    Article  CAS  Google Scholar 

  4. Martínez-Máñez R, Soto J, García-Breijo E, Gil L, Ibáñez J, Gadea E (2005) Sensors Actuators A Phys 120:589–596

    Article  Google Scholar 

  5. Zhuiykov S (2009) Ionics 15:507–512

    Article  CAS  Google Scholar 

  6. Zhuiykov S (2012) Sensors Actuators B Chem 161:1–20

    Article  CAS  Google Scholar 

  7. Zhuiykov S, Marney D, Kats E, Kalantar-zadeh K (2011) Sensors Actuators B Chem 153:312–320

    Article  Google Scholar 

  8. Zhuiykov S (2011) Mater Lett 65:3219–3222

    Article  CAS  Google Scholar 

  9. Zhuiykov S, O'Brien D, Best M (2009) Meas Sci Technol 20:095201

    Article  Google Scholar 

  10. Zhuiykov S, Kats E, Plashnitsa V, Miura N (2011) Electrochim Acta 56:5435–5442

    Article  CAS  Google Scholar 

  11. Zhuiykov S (2010) Ceram Int 36:2407–2413

    Article  CAS  Google Scholar 

  12. Vonau W, Gabel J, Jahn H (2005) Electrochim Acta 50:4981–4987

    Article  CAS  Google Scholar 

  13. Bratov A, Abramova N, Ipatov A (2010) Anal Chim Acta 678:149–159

    Article  CAS  Google Scholar 

  14. Pocrifka LA, Goncalves C, Grossi P, Colpa PC, Pereira EC (2006) Sensors Actuators B Chem 113:1012–1016

    Article  Google Scholar 

  15. Zhang W-D, Xu B (2009) Electrochem Commun 11:1038–1041

    Article  CAS  Google Scholar 

  16. Chiu YS, Lee CT, Electrochem J (2011) Society 158:J282–J285

    CAS  Google Scholar 

  17. Qiu X, Tang R, Chen SJ, Zhang H, Pang W, Yu H (2011) Electrochem Commun 13:488–490

    Article  CAS  Google Scholar 

  18. Zhuiykov S, Kats E, Marney D (2010) Talanta 82:502–507

    Article  CAS  Google Scholar 

  19. Zhuiykov S, Kalantar-zadeh K (2012) Electrochim Acta 73:105–111

    Article  CAS  Google Scholar 

  20. Zhuiykov S, Plashnitsa V, Miura N (2011) Mater Lett 65:991–994

    Article  CAS  Google Scholar 

  21. Zhuiykov S, Kats E, Marney D, Kalantar-zadeh K (2011) Prog Org Coat 70:67–73

    Article  CAS  Google Scholar 

  22. Lin HK, Wang CB, Chui HC, Chien SH (2003) Catal Lett 86:63–70

    Article  CAS  Google Scholar 

  23. Ardizzone S, Fregonara G, Trasatti S (1990) Electrochem Acta 35:263–269

    Article  CAS  Google Scholar 

  24. Trasatti S (1991) Electrochem Acta 36:225–241

    Article  CAS  Google Scholar 

  25. Kurzweil P (2010) J Power Sources 190:189–200

    Article  Google Scholar 

  26. Zhuiykov S, Kats E, Kalantar-zadeh K, Breedon M, Miura N (2012) Mater Lett 75:165–168

    Article  CAS  Google Scholar 

  27. Fabregat-Santiago F, Garcia-Belmonte G, More-Sero I, Bisquert J (2011) Phys Chem Chem Phys 13:9083–9118

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the CSIRO Sensors and Sensor Networks Transformational Capability Platform and CSIRO Materials Science and Engineering Division—strategic co-investment SIP7 project ‘Sensing Paradigms’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Zhuiykov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuiykov, S., Kats, E. In situ FTIR investigation of adsorption properties of sub-micron Cu2O-doped RuO2 sensing electrode of planar potentiometric pH sensor. Ionics 18, 797–802 (2012). https://doi.org/10.1007/s11581-012-0764-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0764-2

Keywords

Navigation