Skip to main content
Log in

Proton-conducting composite membranes from graft copolymer electrolytes and phosphotungstic acid for fuel cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

New organic–inorganic composite membranes based on poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(styrene sulfonic acid) [P(VDF-co-CTFE)-g-PSSA] with embedded phosphotungstic acid (PWA) were prepared. Fourier transform infrared spectra indicated the existence of a specific interaction between P(VDF-co-CTFE)-g-PSSA graft copolymer and PWA particles. PWA nanoparticles were well confined in the polymeric matrix up to 20 wt.%, above which they started to be extracted from the matrix, as revealed by scanning electron microscope analysis. Accordingly, Young’s modulus of membranes also increased with PWA concentration up to 20 wt.%, above which it continuously decreased. Upon incorporation of PWA nanoparticles, the proton conductivity of composite membranes slightly decreased from 0.042 to 0.035 S/cm at room temperature up to 20 wt.%, presumably due to strong interaction between the sulfonic acids of graft copolymer and PWA nanoparticles. The characterization by thermal gravimetric analysis demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of PWA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Trapa PE, Huang B, Won YY, Sadoway DR, Mayes AM (2002) Electrochem Solid-State Lett 5:A85

    Article  CAS  Google Scholar 

  2. Kuo SW, Wu CH, Chang FC (2004) Macromolecules 37:192

    Article  CAS  Google Scholar 

  3. Kim JH, Kang MS, Kim YJ, Won J, Park NG, Kang YS (2004) Chem Commun 14:1662

    Article  Google Scholar 

  4. Kim JH, Min BR, Won J, Joo SH, Kim HS, Kang YS (2003) Macromolecules 36:6183

    Article  CAS  Google Scholar 

  5. Smitha B, Sridhar S, Khan AA (2003) J Membr Sci 225:63

    Article  CAS  Google Scholar 

  6. Smitha B, Sridhar S, Khan AA (2005) J Membr Sci 259:10

    Article  CAS  Google Scholar 

  7. Di Vona ML, Ahmed Z, Bellitto S, Lenci A, Traversa E, Licoccia S (2007) J Membr Sci 296:156

    Article  Google Scholar 

  8. Licoccia S, Di Vona ML, D’Epifanio A, Ahmed Z, Bellitto S, Marani D, Mecheri B, de Bonis C, Trombetta M, Traversa E (2007) J Power Sources 167:79

    Article  CAS  Google Scholar 

  9. Mikhailenko SD, Wang K, Kaliaguine S, Xing P, Robertson GP, Guiver MD (2004) J Membr Sci 233:93

    Article  CAS  Google Scholar 

  10. Chen SL, Benziger JB, Bocarsly AB, Zhang T (2005) Ind Eng Chem Res 44:7701

    Article  CAS  Google Scholar 

  11. Li Z, Ding J, Robertson GP, Guiver MD (2006) Macromolecules 39:6990

    Article  CAS  Google Scholar 

  12. Varcoe JR, Slade RCT, Yee ELH, Poynton SD, Driscoll DJ, Apperley DC (2007) Chem Mater 19:2686

    Article  CAS  Google Scholar 

  13. Xing PX, Robertson GP, Guiver MD, Mikhailenko SD, Kaliaguine S (2004) J Polym Sci A Polym Chem 42:2866

    Article  CAS  Google Scholar 

  14. Manea C, Mulder M (2002) J Membr Sci 206:443

    Article  CAS  Google Scholar 

  15. Heitner-Wirguin C (1996) J Membr Sci 120:1

    Article  CAS  Google Scholar 

  16. Lee DK, Kim YW, Choi JK, Min BR, Kim JH (2008) J Appl Polym Sci 107:819

    Article  CAS  Google Scholar 

  17. Kim YW, Choi JK, Park JT, Kim JH (2008) J Membr Sci 313:315

    Article  CAS  Google Scholar 

  18. Wang Z, Ni H, Zhao C, Li X, Fu T, Na H (2006) J Polym Sci B Polym Phys 44:1967

    Article  CAS  Google Scholar 

  19. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263

    Article  CAS  Google Scholar 

  20. Fu TZ, Zhao CJ, Zhong SL, Zhang G, Shao K, Zhang HQ, Wang J, Na H (2007) J Power Sources 165:708

    Article  CAS  Google Scholar 

  21. Kim YW, Lee DK, Lee KJ, Kim JH (2008) Eur Polym J 44:932

    Article  CAS  Google Scholar 

  22. Wang Z, Ni H, Zhao C, Li X, Fu T, Na H (2006) J Polym Sci B Polym Phys 44:1967

    Article  CAS  Google Scholar 

  23. Kim YS, Wang F, Hickner M, Zawodzinski TA, McGrath JE (2003) J Membr Sci 212:263

    Article  CAS  Google Scholar 

  24. Fu TZ, Zhao CJ, Zhong SL, Zhang G, Shao K, Zhang HQ, Wang J, Na H (2007) J Power Sources 165:708

    Article  CAS  Google Scholar 

  25. Choi JK, Lee DK, Kim YW, Min BR, Kim JH (2008) J Polym Sci B Polym Phys 46:691

    Article  CAS  Google Scholar 

  26. Mokrini A, Acosta JL (2001) Polymer 42:9

    Article  CAS  Google Scholar 

  27. Ramani V, Kunz HR, Fenton JM (2004) J Membr Sci 232:31

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation(KOSEF) grant funded by the Korea government(MEST) (No. R01-2008-000-10112-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Hak Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roh, D.K., Park, J.T., Koh, J.H. et al. Proton-conducting composite membranes from graft copolymer electrolytes and phosphotungstic acid for fuel cells. Ionics 15, 439–444 (2009). https://doi.org/10.1007/s11581-008-0291-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0291-3

Keywords

Navigation