Skip to main content
Log in

Effect of montmorillonite filler on structural and electrical properties of polymer nanocomposite electrolytes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer–clay nanocomposites consisting of polymer (polyethylene oxide) and NaI as salt with different concentration of organically modified Na+-montmorillonite (DMMT) have been fabricated and characterized. X-ray diffraction analysis shows that the polymer–salt complexes have been intercalated into the nanometric silicate layers of DMMT. Fourier transform infrared analysis shows that the polymer structure in the clay interlayer is similar to that of the polymer–salt complexes, and there is a strong interaction between the polymer–salt complexes and clay layers. A study of surface morphology using scanning electron microscopy reveals that microstructure of composites is affected by clay addition. Complex impedance analysis was used to calculate the bulk resistance of the composites. An enhancement in the conductivity of about one order of magnitude has been observed on 5% clay addition compared to that of the polymer–salt complexes, and it decreases monotonically for higher clay concentration. The effect of clay concentration on the structural and physical properties of polymer nanocomposites is well correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. MacCallum JR, Vincent CA (1987) Polymer electrolyte review—I & II. Elsevier, London

    Google Scholar 

  2. Vincent CA (1987) Prog Solid State Chem 17:145–261

    Article  CAS  Google Scholar 

  3. Gray FM (1991) Solid polymer electrolytes, fundamentals and technological applications. VCH, New York

    Google Scholar 

  4. Conway BE (1999) Electrochemical supercpapcitors: scientific fundamental and technological applications. Kluwer/Plenum, New York

    Google Scholar 

  5. Pinnavaia TJ, Bell GW (2000) Polymer–clay nanocomposite. Wiley, UK, pp 1–46

    Google Scholar 

  6. Ruiz-Hitzky E, Aranda P (1990) Adv Mater 2:545–547

    Article  CAS  Google Scholar 

  7. Aranda P, Ruiz-Hitzky E (1992) Chem Mater 4:1395–1403

    Article  CAS  Google Scholar 

  8. Wu J, Lerner MM (1993) Chem Mater 5:835–838

    Article  CAS  Google Scholar 

  9. Vaia RA, Vasudevan S, Kkrawiec W, Scalson LG, Gannelis EP (1995) Adv Mater 7:154–156

    Article  CAS  Google Scholar 

  10. Kawada T, Tokokawa H, Dokiya M (1988) Solid State Ion 28(30):210–213

    Article  Google Scholar 

  11. Casal B, Aranda P, Sanz J, Ruiz-Hitzky E (1994) Clay Miner 29:191–203

    Article  CAS  Google Scholar 

  12. Wang M, Zhao F, Guo Z, Dong S (2004) Electrochim Acta 49:3595–3602

    Article  CAS  Google Scholar 

  13. Chen HW, Lin TP, Chang FC (2002) Polymer 43:5281–5288

    Article  CAS  Google Scholar 

  14. Ray SS, Okamoto M (2003) Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  15. Takahashi Y, Sumita I, Tadakoro H (1973) J Polym Sci Polym Phys 11:2113–2122

    CAS  Google Scholar 

  16. Klug HP, Alexander BE (1974) X-ray diffraction procedures. Wiley, New York, pp 687–698

    Google Scholar 

  17. Papke BL, Ratner MA, Shriver DF (1981) J Phys Chem Solids 42:493–500

    Article  CAS  Google Scholar 

  18. Ducasse L, Dussauze M, Grondin J, Lassegues J-C, Naudin C, Servant L (2003) Phys Chem Chem Phys 5:567–574

    Article  CAS  Google Scholar 

  19. Aranda P, Ruiz-Hitzky E (1994) Acta Polym 45:59–67

    Article  CAS  Google Scholar 

  20. Cameron GG, Ingram MD, Qureshi MY, Gearing HM, Costa L, Camino G (1989) Eur Polym J 25:779–784

    Article  CAS  Google Scholar 

  21. Grassie N, Mendoza AP (1984) Polym Degrad Stab 9:155–165

    Article  CAS  Google Scholar 

  22. Shen Z, Simon GP, Cheng YB (2003) Eur Polym J 39:1917–1924

    Article  CAS  Google Scholar 

  23. Macdonald JR (1987) Impedance spectroscopy, emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  24. Qian X, Gu N, Cheng Z, Yang X, Wang E, Dong S (2001) Electrochim Acta 46:1829–1836

    Article  CAS  Google Scholar 

  25. Bandeira MCE, Franco CV, Martini E (1999) J Solid State Electrochem 3:210–214

    Article  CAS  Google Scholar 

  26. Yemu Bruno (1999) Z SimpWin version:2; electrochemical impedance spectroscopy (EIS) data analysis software. Princeton Applied Research, Princeton, NJ

    Google Scholar 

  27. Chen HW, Chiu CY, Wu HD, Shen IW, Chang FC (2002) Polymer 43:5011–5016

    Article  CAS  Google Scholar 

  28. Reddy MJ, Kumar JS, Rao UVS, Chu PP (2006) Solid State Ion 177:253–253

    Article  Google Scholar 

  29. Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Ionics 11(1 & 2):95–102

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We are thankful to Prof. S. K. Srivastava, Department of Chemistry, I. I. T. Kharagpur-721302-India, and Mr. N. K. Karan, Department of Physics, University of Puerto Rico, San Juan, PR 00931 (USA) for some help in experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. P. Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradhan, D.K., Choudhary, R.N.P., Samantaray, B.K. et al. Effect of montmorillonite filler on structural and electrical properties of polymer nanocomposite electrolytes. Ionics 15, 345–352 (2009). https://doi.org/10.1007/s11581-008-0271-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-008-0271-7

Keywords

Navigation