Skip to main content
Log in

Thermal stabilization of tin- and cobalt-doped manganese dioxide

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We study the thermal stability, local structure, and electrical properties of the α-MnO2 phase doped with Sn and Co. It is found that doping prevents the transformation from α-MnO2 to α-Mn2O3 that occurred in the temperature range of 500–600 °C. Samples have been synthesized in an acidic medium using the reduction of potassium permanganate by fumaric acid. X-ray diffraction patterns (XRD) of pure and doped α-MnO2 prepared at 450 °C do not show new peaks related to dopant species. Thermogravimetric analysis (TGA) of the Sn and Co doped MnO2 reveals that transformation from MnO2 to α-Mn2O3 starts above 700 °C. The increase in the thermal stability is attributed to the presence of Sn or Co ions incorporated inside the large 2 × 2 tunnels as revealed by Fourier transform infrared (FTIR) spectra measurements. An increase in the electrical conductivity with the presence of Sn or Co ions is observed. Electrochemical features of the doped MnO2 samples in alkaline cells are reported and compared with that of the pristine α-MnO2 phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brenet JP (1979) J Power Sources 4:183

    Article  CAS  Google Scholar 

  2. Hunter JC (1981) J Solid State Chem 39:142

    Article  CAS  Google Scholar 

  3. Nardi JC (1985) J Electrochem Soc 132:1787

    Article  CAS  Google Scholar 

  4. Ohzuku T, Kitagawa M, Sawai K, Hirai T (1991) J Electrochem Soc 138:360

    Article  CAS  Google Scholar 

  5. Thackeray MM (1997) Progr Solid State Chem 25:1

    Article  CAS  Google Scholar 

  6. Rossouw MS, Liles DC, Thackeray MM, David WIF, Hull H (1992) Mat Res Bull 27:221

    Article  CAS  Google Scholar 

  7. Bach S, Pereira-Ramos JP, Baffier N (1995) Solid State Ionics 80:151

    Article  CAS  Google Scholar 

  8. Muraoka Y, Chiba H, Atou T, Kikuchi M, Hiraga K, Syono Y, Sugiyama S, Yamamoto S, Grenier JC (1999) J Solid State Chem 144:136

    Article  CAS  Google Scholar 

  9. Dai J, Sam FY, Siow KS, Gao Z (2000) Electrochim Acta 45:2211

    Article  CAS  Google Scholar 

  10. Julien CM, Massot M, Poinsignon C (2004) Spectrochim Acta A 60:689

    Article  CAS  Google Scholar 

  11. Moore TE, Ellise M, Selwood PW (1950) J Am Chem Soc 72:856

    Article  CAS  Google Scholar 

  12. Bach S, Henry M, Baffier N, Livage J (1995) J Solid State Chem 88:325

    Article  Google Scholar 

  13. Johnson CS, Mansuetto MF, Thackeray MM, Shao-Horn Y, Hackney SA (1997) J Electrochem Soc 144:2279

    Article  CAS  Google Scholar 

  14. Beley M, Brenet JP (1973) Electrochim Acta 18:1003

    Article  CAS  Google Scholar 

  15. Feng Q, Kanoh H, Ooi K, Tani M, Nakacho YJ (1994) J Electrochem Sopc 141:L135

    Article  CAS  Google Scholar 

  16. Takahashi T (1981) Electrochim Acta 26:1467

    Article  CAS  Google Scholar 

  17. Liao MY, Lin JM, Wang JH, Yang JH Yang CT, Chou TL, Mok BH, Chong NS, Tang HY (2003) Electrochem Commun 5:312

    Article  CAS  Google Scholar 

  18. Yagi H, Ichikawa T, Hirano A, Imanishi N, Ogawa S, Takeda Y (2002) Solid State Ion 154–155:273

    Article  Google Scholar 

  19. Johnson CS, Thackeray MM (2001) J Power Sources 97–98:437

    Article  Google Scholar 

  20. Sugantha M, Ramkrishnan PA, Hermann AM, Warmsingh CP, Ginly DS (2003) Int J Hydrogen Energy 28:597

    Article  CAS  Google Scholar 

  21. Goodenough JB, Thackeray MM, David WIF, Bruce PG (1984) Rev Chim Miner 21:435

    CAS  Google Scholar 

  22. Liles D, Rossouw M, Thackeray MM (1992) JCPDS file No. 44-9141

  23. Ohzuku T, Tari I, Hirai T (1982) Electrochim Acta 27:1049

    Article  CAS  Google Scholar 

  24. Hashem AMA (2004) Ionics 10:20

    Article  Google Scholar 

  25. Julien CM, Ait-Salah A, Mauger A, Gendron F (2006) Ionics 12:21

    Article  CAS  Google Scholar 

  26. Goodenough JB (1963) Magnetism and the chemical bond. Wiley, New York

    Google Scholar 

  27. Dzieciuch MA, Gupta N, Wroblowa HS (1988) J Electrochem Soc 135:2415

    Article  CAS  Google Scholar 

  28. Qu DY, Conway BE, Bai L, Zhou YH, Adams WA (1993) J Appl Electrochem 23:693

    Article  CAS  Google Scholar 

  29. Bai L, Qu DY, Conway BE, Zhou YH, Chowdhury G, Adams WA (1997) J Electrochem Soc 140:884

    Article  Google Scholar 

  30. Bezdicka P, Grygar T, Klapste B, Vondrak J (1999) Electrochim Acta 45:913

    Article  CAS  Google Scholar 

  31. Klapste B, Vondrak J, Velicka J (2002) Electrochim Acta 47:2365

    Article  CAS  Google Scholar 

  32. Chabre Y, Pannetier J (1995) Prog Solid St Chem 23:1

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr A. Mauger for fruitful discussions. We thank M. Selmane for his assistance in the XRD measurements. This work was done in the frame of the Franco-Egyptian collaborative program OMHOTEP (grant No. 12454NE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Julien.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashem, A.M.A., Mohamed, H.A., Bahloul, A. et al. Thermal stabilization of tin- and cobalt-doped manganese dioxide. Ionics 14, 7–14 (2008). https://doi.org/10.1007/s11581-007-0138-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-007-0138-3

Keywords

Navigation