Skip to main content
Log in

Mean field game of controls and an application to trade crowding

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this paper we formulate the now classical problem of optimal liquidation (or optimal trading) inside a mean field game (MFG). This is a noticeable change since usually mathematical frameworks focus on one large trader facing a “background noise” (or “mean field”). In standard frameworks, the interactions between the large trader and the price are a temporary and a permanent market impact terms, the latter influencing the public price. In this paper the trader faces the uncertainty of fair price changes too but not only. He also has to deal with price changes generated by other similar market participants, impacting the prices permanently too, and acting strategically. Our MFG formulation of this problem belongs to the class of “extended MFG”, we hence provide generic results to address these “MFG of controls”, before solving the one generated by the cost function of optimal trading. We provide a closed form formula of its solution, and address the case of “heterogenous preferences” (when each participant has a different risk aversion). Last but not least we give conditions under which participants do not need to instantaneously know the state of the whole system, but can “learn” it day after day, observing others’ behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Large asset managers, like Blackrock, Amundi, Fidelity or Allianz, delegate the implementation of their investment decisions to a dedicated (internal) team: their dealing desk. This team is in charge of trading to drive the real portfolios to their targets. They are implementing on a day to day basis what this paper is modelling.

References

  1. Alfonsi, A., Blanc, P.: Dynamic optimal execution in a mixed-market-impact Hawkes price model. Finance Stoch. 20(1), 183–218 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Almgren, R.F., Chriss, N.: Optimal execution of portfolio transactions. J. Risk 3(2), 5–39 (2000)

    Article  Google Scholar 

  3. Almgren, R., Thum, C., Hauptmann, E., Li, H.: Direct estimation of equity market impact. Risk 18, 57–62 (2005)

    Google Scholar 

  4. Bacry, E., Iuga, A., Lasnier, M., Lehalle, C.-A.: Market impacts and the life cycle of investors orders. Mark. Microstruct. Liq. 1(2), 1550009 (2015)

    Article  Google Scholar 

  5. Barles, G.: A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time. C. R. Math. 343(3), 173–178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bensoussan, A., Frehse, J., Yam, P.: Mean Field Games and Mean Field Type Control Theory, vol. 101. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  7. Bensoussan, A., Sung, K.C.J., Yam, S.C.P., Yung, S.P.: Linear-quadratic mean field games. J. Optim. Theory Appl. 169(2), 496–529 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bernhard, P.: The Robust Control Approach to Option Pricing and Interval Models: An Overview. In: Breton M., Ben-Ameur H. (eds) Numerical Methods in Finance. Springer, Boston, MA (2005)

  9. Bouchard, B., Dang, N.-M., Lehalle, C.-A.: Optimal control of trading algorithms: a general impulse control approach. SIAM J. Financ. Math. 2(1), 404–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brokmann, X., Serie, E., Kockelkoren, J., Bouchaud, J.-P.: Slow decay of impact in equity markets. Mark. Microstruct. Liq. 1(02), 1550007 (2015)

    Article  Google Scholar 

  11. Caines, P.E.: Mean field games. In: Baillieul J., Samad T. (eds) Encyclopedia of Systems and Control, pp. 706–712 (2015)

  12. Cardaliaguet, P., Hadikhanloo, S.: Learning in mean field games: the fictitious play. ESAIM Control Optim. Calc. Var. 23(2), 569–591 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carmona, R., Delarue, F.: Probabilistic Theory of Mean Field Games with Applications. Springer, Berlin (2018)

  14. Carmona, R., Fouque, J.-P., Sun, L.-H.: Mean field games and systemic risk. Social Science Research Network Working Paper Series (2013)

  15. Carmona, R., Lacker, D.: A probabilistic weak formulation of mean field games and applications. Ann. Appl. Probab. 25(3), 1189–1231 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cartea, A., Donnelly, R., Jaimungal, S.: Algorithmic trading with model uncertainty. SIAM J. Financ. Math. 8(1), 635–671 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cartea, Á., Jaimungal, S.: Incorporating order-flow into optimal execution. Social Science Research Network Working Paper Series (2015)

  18. Cartea, Á., Jaimungal, S., Penalva, J.: Algorithmic and High-Frequency Trading (Mathematics, Finance and Risk), 1st edn. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  19. Fudenberg, D., Levine, D.K.: The Theory of Learning in Games, vol. 2. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  20. Gomes, D.A.: Mean field games models? A brief survey. Dyn. Games Appl. 4(2), 110–154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gomes, D.A., Patrizi, S., Voskanyan, V.: On the existence of classical solutions for stationary extended mean field games. Nonlinear Anal. Theory Methods Appl. 99, 49–79 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gomes, D.A., Voskanyan, V.K.: Extended deterministic mean-field games. SIAM J. Control Optim. 54(2), 1030–1055 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guéant, O.: The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making. Chapman and Hall/CRC, London (2016)

    MATH  Google Scholar 

  24. Guéant, O., Lasry, J.-M., Lions, P.-L.: Mean field games and applications. In: Paris-Princeton Lectures on Mathematical Finance 2010, pp. 205–266. Springer, Berlin (2011)

  25. Guéant, O., Lehalle, C.-A.: General intensity shapes in optimal liquidation. Math. Finance 25(3), 457–495 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Guilbaud, F., Pham, H.: Optimal High Frequency Trading with limit and market orders. Quant. Finance 13(1), 79–94 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, M., Malhamé, R.P., Caines, P.E.: Large population stochastic dynamic games: closed-loop McKean–Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6(3), 221–252 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Jaimungal, S., Nourian, M., Huang, X.: Mean-Field Game Strategies for a Major–Minor Agent Optimal Execution Problem. Social Science Research Network Working Paper Series (2015)

  29. Kizilkale, A.C., Caines, P.E.: Mean field stochastic adaptive control. IEEE Trans. Automat. Contr. 58(4), 905–920 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laruelle, S., Lehalle, C.-A., Pagès, G.: Optimal posting price of limit orders: learning by trading. Math. Financ. Econ. 7(3), 359–403 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. I - Le cas stationnaire. C. R. Math. 343(9), 619–625 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lasry, J.-M., Lions, P.-L.: Jeux à champ moyen. II - Horizon fini et contrôle optimal. C. R. Math. 343(10), 679–684 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lasry, J.-M., Lions, P.-L.: Mean field games. Jpn. J. Math. 2(1), 229–260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lehalle, C.-A., Laruelle, S., Burgot, R., Pelin, S., Lasnier, Matthieu: Market Microstructure in Practice. World Scientific Publishing, Singapore (2013)

    Book  Google Scholar 

  35. Nourian, M., Caines, P.E., Malhamé, R.P., Huang, M.: Mean field LQG control in leader-follower stochastic multi-agent systems: likelihood ratio based adaptation. IEEE Trans. Automat. Contr. 57(11), 2801–2816 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Obizhaeva, A., Wang, J.: Optimal Trading Strategy and Supply/Demand Dynamics. Social Science Research Network Working Paper Series (2005)

  37. Waelbroeck, H., Gomes, C.: Is Market Impact a Measure of the Information Value of Trades? Market Response to Liquidity vs. Informed Trades. Social Science Research Network Working Paper Series, July (2013)

Download references

Acknowledgements

Authors thank Marc Abeille for his careful reading of Sect. 3.2.1. The first author was partially supported by the ANR (Agence Nationale de la Recherche) Projects ANR-14-ACHN-0030-01 and ANR-16-CE40-0015-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles-Albert Lehalle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardaliaguet, P., Lehalle, CA. Mean field game of controls and an application to trade crowding. Math Finan Econ 12, 335–363 (2018). https://doi.org/10.1007/s11579-017-0206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-017-0206-z

Keywords

JEL Classification

Navigation