Skip to main content
Log in

Foundations of continuous-time recursive utility: differentiability and normalization of certainty equivalents

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

This paper relates recursive utility in continuous time to its discrete-time origins and provides an alternative to the approach presented in Duffie and Epstein (Econometrica 60:353–394, 1992), who define recursive utility in continuous time via backward stochastic differential equations (stochastic differential utility). We show that the notion of Gâteaux differentiability of certainty equivalents used in their paper has to be replaced by a different concept. Our approach allows us to address the important issue of normalization of aggregators in non-Brownian settings. We show that normalization is always feasible if the certainty equivalent of the aggregator is of the expected utility type. Conversely, we prove that in general Lévy frameworks this is essentially also necessary, i.e. aggregators that are not of the expected utility type cannot be normalized in general. Besides, for these settings we clarify the relationship of our approach to stochastic differential utility and, finally, establish dynamic programming results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles G., Buckdahn R., Pardoux E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60, 57–83 (1997)

    MATH  MathSciNet  Google Scholar 

  2. Benzoni, L., Collin-Dufresne, P., Goldstein, R.: Can standard preferences explain the prices of out-of-the-money S&P 500 put options? NBER Working Paper W11861 (2005)

  3. Bhamra H.S., Kuehn L.-A., Strebulaev I.A.: The levered equity risk premium and credit spreads: a unified framework. Rev. Financ. Stud. 23, 645–703 (2010)

    Article  Google Scholar 

  4. Bhamra, H.S., Kuehn, L.-A., Strebulaev, I.A.: The aggregate dynamics of capital structure and macroeconomic risk. Rev. Financ. Stud. (2010) (forthcoming)

  5. Bouchard B., Touzi N.: Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111, 175–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buckdahn, R., Pardoux, E.: BSDE’s with jumps and associated integro-partial differential equations, preprint (1994)

  7. Chew S.: A generalization of the quasilinear mean with applications to the measurement of income inequality and decision theory resolving the allais paradox. Econometrica 51, 1065–1092 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chew S.: Axiomatic utility theories with the betweenness property. Ann. Oper. Res. 19, 273–298 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dekel E.: An axiomatic characterization of preferences under uncertainty. J. Econ. Theory 40, 304–318 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Duffie D., Epstein L.: Stochastic differential utility. Econometrica 60, 353–394 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duffie D., Lions P.-L.: PDE solutions of stochastic differential utility. J. Math. Econ. 21, 577–606 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duffie D., Skiadas C.: Continuous-time security pricing: a utility gradient approach. J. Math. Econ. 23, 107–131 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. El Karoui N., Peng S., Quenez M.C.: Backward stochastic differential equations in finance. Math. Financ. 7, 1–71 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Epstein L.: the global stability of efficient intertemporal allocations. Econometrica 55, 329–358 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Epstein L., Zin S.: Substitution, risk aversion and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937–969 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ethier S., Kurtz T.: Markov Processes: Characterization and Convergence. 2nd edn. Wiley, New York (1986)

    MATH  Google Scholar 

  17. Fisher, M., Gilles, C.: Consumption and asset prices with recursive preferences. FEDS Working Paper 98–40 (1998)

  18. Jacod J., Shiryaev A.: Limit Theorems for Stochastic Processes. 2nd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  19. Kreps D., Porteus E.: Temporal resolution of uncertainty and dynamic choice theory. Econometrica 46, 185–200 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lazrak A., Quenez M.C.: A generalized stochastic differential utility. Math. Oper. Res. 28, 154–180 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ma C.: An existence theorem of intertemporal recursive utility in the presence of Lévy jumps. J. Math. Econ. 34, 509–526 (2000)

    Article  MATH  Google Scholar 

  22. Machina M.: ‘Expected utility’ analysis without the independence axiom. Econometrica 50, 277–323 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  23. Schroder M., Skiadas C.: Optimal consumption and portfolio selection with stochastic differential utility. J. Econ. Theory 89, 68–126 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schroder M., Skiadas C.: Optimal lifetime consumption-portfolio strategies under trading constraints and generalized recursive preferences. Stoch. Process. Appl. 108, 155–202 (2003)

    MATH  MathSciNet  Google Scholar 

  25. Schroder M., Skiadas C.: Optimality and state pricing in constrained financial markets with recursive utility under continuous and discontinuous information. Math. Financ. 18, 199–238 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Skiadas C.: Recursive utility and preferences for information. Econ. Theory 12, 293–312 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Skiadas C.: Dynamic portfolio choice and risk aversion. In: Birge, J.R., Linetsky V., (eds) Handbooks in Operation Research and Management Science, vol. 15, pp. 789–843. Elsevier, New York (2008)

    Google Scholar 

  28. Skiadas, C.: Smooth ambiguity aversion toward small risks and continuous-time recursive utility, preprint. http://ssrn.com/abstract=1238156 (2008)

  29. Svensson L.E.O.: Portfolio choice with non-expected utility in continuous time. Econ. Lett. 30, 313–317 (1989)

    Article  MathSciNet  Google Scholar 

  30. Tang S., Li X.: Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Control Optim. 32, 1447–1475 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Kraft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraft, H., Seifried, F.T. Foundations of continuous-time recursive utility: differentiability and normalization of certainty equivalents. Math Finan Econ 3, 115–138 (2010). https://doi.org/10.1007/s11579-010-0030-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-010-0030-1

Keywords

JEL Classification

Navigation