Skip to main content
Log in

Scale-free networks

The impact of fat tailed degree distribution on diffusion and communication processes

  • WI — State-of-the-Art
  • Published:
WIRTSCHAFTSINFORMATIK

Abstract

The study of network topologies provides interesting insights into the way in which the principles on which interconnected systems are constructed influence the dynamics of diffusion and communication processes in many kinds of socio-technical systems. Empirical research has shown that there are principles of construction similar to those of the laws of nature for social networks and their technical derivatives, like E-mail networks, the internet, publication co-authoring, or business collaboration. For decades, the paradigm of a randomly connected network has been used as a model for real world networks, in ignorance of the fact that they are only a poor fit for such networks. Apparently, all the above-mentioned networks share the same building blocks. They attach new members over time and the attachment prefers existing members that are already well connected. This principle of “preferential attachment” leads to interesting properties that have to be taken into consideration when analyzing and designing systems with some kind of network background.

What are called “scale-free” networks seems to be a better fit for the description of real world networks. They use preferential attachment as a construction principle to resample real world networks. Their behavior in terms of diffusion and communication processes is fundamentally different from that of random networks.

To illustrate the potential value of the discovery of scale-free networks for applications in information systems related research, an example will be used in this article to illustrate their usefulness for realistic network modeling. A scale-free communication network of security traders will show what impact network topology has on the dynamics of complex socio-technical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, Reka; Barabasi, Albert-Laszlo: Statistical mechanics of complex networks. In: Reviews of Modern Physics 74 (2002) 1, pp. 47–97.

    Article  Google Scholar 

  2. Albert, Reka; Jeong, Hawoong; Barabasi, Albert-Laszlo: Diameter of the World Wide Web. In: Nature 401 (1999), pp. 130–131.

    Article  Google Scholar 

  3. Arthur, Brian W.; Holland, John; Le-Baron, Blake; Palmer, R. G.; Taylor, Paul: Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. Working Paper #96-12-093 (1996).

  4. Banerjee, Abhijit V.: A Simple Model of Herd Behavior. In: Quarterly Journal of Economics 107 (1992) 3, pp. 797–817.

    Article  Google Scholar 

  5. Banerjee, Abhijit V.: The Economics of Rumours. In: The Review of Economic Studies 60 (1993) 2, pp. 309–327.

    Article  Google Scholar 

  6. Barabasi, Albert-Laszlo: Linked. Plume, London 2003.

    Google Scholar 

  7. Barabasi, Albert-Laszlo; Albert, Reka: Emergence of Scaling in Random Networks. In: Science 286 (1999), pp. 509–512.

    Article  Google Scholar 

  8. Barabasi, Albert-Laszlo; Bonabeau, Eric: Scale-Free Networks.Scientific American 2003.

  9. Cont, Rama: Empirical properties of asset returns: stylized facts and statistical issues. In: Quantitative Finance (2001) 1, pp. 223–236.

    Article  Google Scholar 

  10. Cont, Rama; Bouchaud, Jean-Philippe: Herd behavior and aggregate fluctuations in financial markets. In: Macroeconomic Dynamics 4 (2000), pp. 170–196.

    Article  Google Scholar 

  11. Dorogovtsev, Sergey; Mendes, J. Fernando: Evolution of Networks, From Biological Nets to the Internet and WWW.Oxford University Press, Oxford 2003.

  12. Ebel, H.; Mielsch, L.-I.; Bornholdt, S.: Scale-free topology of e-mail networks. In: Phys. Rev. E 66 (2002), pp. 035103.

    Article  Google Scholar 

  13. Erdös, Paul; Rényi, Alfred: On random graphs. In: Publ. Math. Debrecen 6 (1959), pp. 290.

    Google Scholar 

  14. Hein, Oliver; Schwind, Michael: Standardisierte Mikrosimulation eines Kapitalmarktes mit scale-free Netzwerken und Informationsansteckung. In: Ferstl, O.K.; Sinz, E.J.; Eckert, S.; Isselhorst, T. (Eds.): Wirtschaftsinformatik 2005, Physica-Verlag, Heidelberg 2005.

    Google Scholar 

  15. Hein, Oliver; Schwind, Michael; Spiwoks, Markus: A Microscopic Stock Market Model with Heterogeneous Interacting Agents in a Scale-Free Communication Network. Workshop on Economic Heterogeneous Interacting Agents (WEHIA 05), University of Essex 2005.

  16. Keeling, Matthew J.: The effects of local spatial structure on epidemiological invasions. Proceedings of the Royal Society of London B 266, 1999, pp. 859–867.

    Article  Google Scholar 

  17. Kermack, William O.; McKendrick, Anderson G.: A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London Series A 115, 1927, pp. 700–721.

    Article  Google Scholar 

  18. Leveille, Jasmin: Epidemic Spreading in Technological Networks. Working Paper, HP, Bristol 2002.

  19. Levy, Moshe; Levy, Haim; Solomon, Sorin: Microscopic Simulations of Financial Markets. Academic Press, New York 2000.

    Google Scholar 

  20. Lloyd, Alun L.; May, Robert M.: How Viruses Spread Among Computers and People. In: Science 292 (2001) 5520, pp. 1316–1317.

    Article  Google Scholar 

  21. López-Pintado, Dunia: Diffusion in complex social networks. Working Paper, University of Alicante, Alicante, 2004.

  22. Lux, Thomas; Marchesi, Michele: Volatility Clustering in Financial Markets: A Microsimulation of Interacting Agents. In: International Journal of Theoretical and Applied Finance 3 (2000) 4, pp. 675–702.

    Article  Google Scholar 

  23. Mandelbrot, Benoit B.: The (Mis)Behavior of Markets, A Fractal View of Risk, Ruin, and Reward. Basic Books, New York 2004.

    Google Scholar 

  24. May, Robert M.; Lloyd, Alun L.: Infection dynamics on scale-free networks. In: Phys. Review E 64 (2001), pp. 066112.

    Article  Google Scholar 

  25. Moreno, Yamir; Pastor-Satorras, Romualdo; Vespignani, Alessandro: Epidemic outbreaks in complex heterogeneous networks. In: The European Physical Journal B 26 (2002), pp. 521–529.

    Google Scholar 

  26. Pastor-Satorras, Romualdo; Vespignani, Alessandro: Epidemic Spreading in Scale-Free Networks. In: Physical Review Letters 86 (2001) 14, pp. 3200–3203.

    Article  Google Scholar 

  27. Pastor-Satorras, Romualdo; Vespignani, Alessandro: Epidemics and immunization in scale-free networks. In: Bornholdt, S.; Schuster, G. (Eds.): Handbook of Graphs and Networks: From the Genome to the Internet. Wiley-VCH, Weinheim 2002.

    Google Scholar 

  28. Schmidt, Hartmut; Prigge, Stefan: Börsenkursbildung. In: Gerke, W.; Steiner, M. (Eds.): Handwörterbuch des Bank-und Börsenwesens. Schäffer-Poeschl, Stuttgart 2001.

    Google Scholar 

  29. Shiller, Robert: Paradigmenwechsel in der Finanzmarktforschung. Neue Züricher Zeitung 2001, pp. 27.

  30. Shleifer, Andrei: Inefficient Markets: An Introduction to Behavioral Finance. Oxford University Press, Oxford 2000.

    Book  Google Scholar 

  31. Stockheim, Tim; Schwind, Michael; Weiss, Kilian: A Diffusion Model for Communication Standards in Supply Networks. In: Journal of IT Standards & Standardization Research 4 (2006) 2, pp. 24–42.

    Article  Google Scholar 

  32. Valverde, Sergi; Ferrer-Cancho, Ramon; Sole, Richard V.: Scale-free Networks from Optimal Design. In: Europhysics Letters 60 (2002), pp. 512–517.

    Article  Google Scholar 

  33. Vazquez, Alexei; Pastor-Satorras, Romualdo; Vespignani, Alessandro: Internet topology at the router and autonomous system level. cond-mat/0206084 2002.

  34. Wang, Fan X.; Chen, Guanrong: Complex Networks: Small-World, Scale-Free and Beyond. In: IEEE Circuits and Systems Magazine 1 (2003), pp. 6–20.

    Article  Google Scholar 

  35. Watts, Duncan J.; Strogatz, Steven H.: Collective dynamics of ’small-world’ networks. In: Nature 393 (1998), pp. 440–442.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hein, O., Schwind, M. & König, W. Scale-free networks. Wirtsch. Inform. 48, 267–275 (2006). https://doi.org/10.1007/s11576-006-0058-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11576-006-0058-2

Keywords

Navigation