Skip to main content
Log in

Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

We study the disynaptic effect of the hilar cells on pattern separation in a spiking neural network of the hippocampal dentate gyrus (DG). The principal granule cells (GCs) in the DG perform pattern separation, transforming similar input patterns into less-similar output patterns. In our DG network, the hilus consists of excitatory mossy cells (MCs) and inhibitory HIPP (hilar perforant path-associated) cells. Here, we consider the disynaptic effects of the MCs and the HIPP cells on the GCs, mediated by the inhibitory basket cells (BCs) in the granular layer; MC \(\rightarrow\) BC \(\rightarrow\) GC and HIPP \(\rightarrow\) BC \(\rightarrow\) GC. The MCs provide disynaptic inhibitory input (mediated by the intermediate BCs) to the GCs, which decreases the firing activity of the GCs. On the other hand, the HIPP cells disinhibit the intermediate BCs, which leads to increasing the firing activity of the GCs. In this way, the disynaptic effects of the MCs and the HIPP cells are opposite. We investigate change in the pattern separation efficacy by varying the synaptic strength \(K^\mathrm{(BC, X)}\) [from the pre-synaptic X (= MC or HIPP) to the post-synaptic BC]. Thus, sparsity for the firing activity of the GCs is found to improve the efficacy of pattern separation, and hence the disynaptic effects of the MCs and the HIPP cells on the pattern separation become opposite ones. In the combined case when simultaneously changing both \(K^\mathrm{(BC, MC)}\) and \(K^\mathrm{(BC, HIPP)}\), as a result of balance between the two competing disynaptic effects of the MCs and the HIPP cells, the efficacy of pattern separation is found to become the highest at their original default values where the activation degree of the GCs is the lowest. We also note that, while the GCs perform pattern separation, sparsely synchronized rhythm is found to appear in the population of the GCs. Hence, we examine quantitative association between population and individual firing behaviors in the sparsely synchronized rhythm and pattern separation. They are found to be strongly correlated. Consequently, the better the population and individual firing behaviors in the sparsely synchronized rhythm are, the more pattern separation efficacy becomes enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almeida LD, Idiart M, Lisman JE (2009) A second function of gamma frequency oscillations: An E%-max winner-take-all mechanism selects which cells fire. J Neurosci 29:7497–7503

    Article  PubMed  PubMed Central  Google Scholar 

  • Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation: A review of anatomical data. Neuroscience 31:571–591

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11

    Article  CAS  PubMed  Google Scholar 

  • Amaral DG, Scharfman HE, Lavenex P (2007) The dentate gyrus: fundamental neuroanatomical organization (dentate gyrus for dummies). Prog Brain Res 163:3–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Andersen P, Bliss TVP, Skrede KK (1971) Lamellar organization of hippocampal excitatory pathways. Exp Brain Res 13:222–238

    Article  CAS  PubMed  Google Scholar 

  • Andersen P, Soleng AF, Raastad M (2000) The hippocampal lamella hypothesis revisited. Brain Res 886:165–171

    Article  CAS  PubMed  Google Scholar 

  • Bakker A, Kirwan CB, Miller M, Stark CEL (2008) Pattern separation in the human hippocampal CA3 and dentate gyrus. Science 319:1640–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barranca VJ, Huang H, Kawakita G (2019) Network structure and input integration in competing firing rate models for decision-making. J Comput Neurosci 46:145–168

    Article  PubMed  Google Scholar 

  • Bartos M, Vida I, Frotscher M, Geiger JR, Jonas P (2001) Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network. J Neurosci 21:2687–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE (2000) Synaptic plasticity in the human dentate gyrus. J Neurosci 20:7080–7086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bielczyk NZ, Piskała K, Płomecka M, Radziński P, Todorova L, Foryś U (2019) Time-delay model of perceptual decision making in cortical networks. PLoS One 14:e0211885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunel N, Hakim V (2008) Sparsely synchronized neuronal oscillations. Chaos 18:015113

    Article  PubMed  Google Scholar 

  • Brunel N, Wang XJ (2003) What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. J Neurophysiol 90:415–430

    Article  PubMed  Google Scholar 

  • Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite-induced epileptic rats. J Neurosci 19:9519–9529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996) Axon arbors and synaptic connections of hippocampal mossy cells in the rat in vivo. J Comp Neurol 366:271–292

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and synaptic connections of a vulnerable population of interneurons in the dentate gyrus in vivo. J Comp Neurol 445:360–373

    Article  PubMed  Google Scholar 

  • Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of dentate gyrus granule cells contribute to pattern separation by controlling sparsity. Hippocampus 27:89–110

    Article  PubMed  Google Scholar 

  • Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing in hippocampal dentate granule cells of the adolescent and adult rats. J Neurosci 32:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-take-all competition via lateral inhibition. Neural Netw 5:47–54

    Article  Google Scholar 

  • Danielson NB, Turi GF, Ladow M, Chavlis S, Petrantonakis PC, Poirazi P, Losonczy A (2017) In vivo imaging of dentate gyrus mossy cells in behaving mice. Neuron 93:552–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk MT, Fenton AA (2018) On how the dentate gyrus contributes to memory discrimination. Neuron 98:832–845

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudek SM, Alexander GM, Farris S (2016) Rediscovering area CA2: unique properties and functions. Nat Rev Nurosci 17:89–102

    Article  CAS  Google Scholar 

  • Espinoza C, Guzman SJ, Zhang X, Jonas P (2018) Parvalbumin+ interneurons obey unique connectivity rules and establish a powerful lateral inhibition microcircuit in dentate gyrus. Nat Commun 9:4605

    Article  PubMed  PubMed Central  Google Scholar 

  • Geiger JRP, Lübke J, Roth A, Frotscher M, Jonas P (1997) Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron 18:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Geisler C, Brunel N, Wang XJ (2005) Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. J Neurophysiol 94:4344–4361

    Article  PubMed  Google Scholar 

  • Gerstner W, Kistler W (2002) Spiking Neuron Models. Cambridge University Press, New York

    Book  Google Scholar 

  • Gluck MA, Myers CE (2001) Gateway to Memory: An Introduction to Neural Network Modeling of the Hippocampus in Learning and Memory. MIT Press, Cambridge

    Google Scholar 

  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–806

    Article  CAS  PubMed  Google Scholar 

  • Hosp JA, Strüber M, Yanagawa Y, Obata K, Vida I, Jonas P, Bartos M (2014) Morpho-physiological criteria divide dentate gyrus interneurons into classes. Hippocampus 24:189–203

    Article  CAS  PubMed  Google Scholar 

  • Houghton C (2017) Dentate gyrus and hilar region revisited. Behav Brain Sci 39:28–29

    Google Scholar 

  • Hsu TT, Lee CT, Tai MH, Lien CC (2016) Differential recruitment of dentate gyrus interneuron types by commissural versus performant pathways. Cerebral Cortex 26:2715–2727

    Article  PubMed  Google Scholar 

  • Jahr CE, Stevens CF (1990) Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics. J Neurosci 10:3178–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinde S, Zsiros V, Jiang Z, Nakao K, Pickel J, Kohno K, Belforte JE, Nakazawa K (2012) Hilar mossy cell degeneration causes transient dentate granule cell hyperexcitability and impaired pattern separation. Neuron 76:1189–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jinde S, Zsiros V, Nakazawa K (2013) Hilar mossy cell circuitry controlling dentate granule cell excitability. Front Neural Circuit 7:14

    Google Scholar 

  • Kassab R, Alexandre F (2018) Pattern separation in the hippocampus: distinct circuits under different conditions. Brain Struct Funct 223:2785–2808

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2014) Realistic thermodynamic and statistical-mechanical measures for neural synchronization. J Neurosci Meth 226:161–170

    Article  Google Scholar 

  • Kim SY, Lim W (2018) Effect of inhibitory spike-timing-dependent plasticity on fast sparsely synchronized rhythms in a small-world neuronal network. Neural Netw 106:50–66

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2021) Effect of diverse recoding of granule cells on optokinetic response in a cerebellar ring network with synaptic plasticity. Neural Netw 134:173–204

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2021) Influence of various temporal recoding on Pavlovian eyeblink conditioning in the cerebellum. Cogn Neurodyn 15:1067–1099

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2021) Equalization effect in interpopulation spike-timing-dependent plasticity in two inhibitory and excitatory populations. In: Lintas A, Enrico P, Pan X, Wang R, Villa A (eds) Advances in Cognitive Neurodynamics (VII). Springer, Singapore, pp 75–82

    Chapter  Google Scholar 

  • Kim SY, Lim W (2021) Population and individual firing behaviors in sparsely synchronixed rhythms in the hippocampal dentata gyrus. Cogn Neurodyn. https://doi.org/10.1007/s11571-021-09728-4

    Article  PubMed  Google Scholar 

  • Kim SY, Lim W (2022) Dynamical origin for winner-take-all competition in a biological network of the hippocampal dentate gyrus. Phys Rev E (Accepted for Publication)

  • Kneisler TB, Dingledine R (1995) Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 5:151–164

    Article  CAS  PubMed  Google Scholar 

  • Knierim JJ, Neunuebel JP (2016) Tracking the flow of hippocampal computation: Pattern separation, pattern completion, and attractor dynamics. Neurobiol Learn Mem 129:38–49

    Article  CAS  PubMed  Google Scholar 

  • Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528

    Article  CAS  PubMed  Google Scholar 

  • Larimer P, Strowbridge BW (2008) Nonrandom local circuits in the dentate gyrus. J Neurosci 28:12212–12223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966

    Article  CAS  PubMed  Google Scholar 

  • Liu YC, Cheng JK, Lien CC (2014) Rapid dynamic changes of dendritic inhibition in the dentate gyrus by presynaptic activity patterns. J Neurosci 34:1344–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lübke J, Frotscher M, Spruston N (1998) Specialized electrophysiological properties of anatomically identified neurons in the hilar region of the rat fascia dentata. J Neurophysiol 79:1518–1534

    Article  PubMed  Google Scholar 

  • Marr D (1971) Simple memory: A theory for archicortex. Phil Trans R Soc Lond B 262:23–81

    Article  CAS  Google Scholar 

  • McNaughton B, Morris R (1987) Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci 10:408–415

    Article  Google Scholar 

  • McNaughton BL, Barnes CA, Mizumori SJY, Green EJ, Sharp PE (1991) Contribution of granule cells to spatial representations in hippocampal circuits: A puzzle. In: Morrell F (ed) Kindling and Synaptic Plasticity: The Legacy of Graham Goddar. Springer-Verlag, Boston, pp 110–123

    Google Scholar 

  • Morgan RJ, Santhakumar V, Soletsz I (2007) Modeling the dentate gyrus. Prog Brain Res 163:639–658

    Article  PubMed  Google Scholar 

  • Myers CE, Scharfman HE (2009) A role for hilar cells in pattern separation in the dentate gyrus: A computational approach. Hippocampus 19:321–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers CE, Scharfman HE (2011) Pattern separation in the dentate gyrus: A role for the CA3 backprojection. Hippocampus 21:1190–1215

    Article  PubMed  Google Scholar 

  • Myers CE, Bermudez-Hernandez K, Scharfman HE (2013) The influence of ectopic migration of granule cells into the hilus on dentate gyrus-CA3 function. PLoS ONE 8:e68208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitz D, McNaughton B (2004) Differential modulation of CA1 and dentate gyrus interneurons during exploration of novel environments. J Neurophysiol 91:863–872

    Article  PubMed  Google Scholar 

  • Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Distribution of nonprincipal neurons in the rat hippocampus, with special reference to their dorsoventral difference. Brain Res 751:64–80

    Article  CAS  PubMed  Google Scholar 

  • Nomura T, Fukuda T, Aika Y, Heizmann CW, Emson PC, Kobayashi T, Kosaka T (1997) Laminar distribution of non-principal neurons in the rat hippocampus, with special reference to their compositional difference among layers. Brain Res 764:197–204

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly RC, McClelland JC (1994) Hippocampal conjunctive encoding, storage, and recall: Avoiding a tradeoff. Hippocampus 4:661–682

    Article  PubMed  Google Scholar 

  • Petrantonakis PC, Poirazi P (2014) A compressed sensing perspective of hippocampal function. Front Syst Neurosci 8:141

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrantonakis PC, Poirazi P (2015) Dentate gyrus circuitry features improve performance of sparse approximation algorithms. PLoS One 10:e0117023

    Article  PubMed  PubMed Central  Google Scholar 

  • Ratzliff ADH, Howard AL, Santhakumar V, Osapay I, Soltesz I (2004) Rapid deletion of mossy cells does not result in a hyperexcitable dentate gyrus: Implications for epileptogenesis. J Neurosci 24:2259–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rolls ET (1989) Functions of neuronal networks in the hippocampus and neocortex in memory. In: Byrne JH, Berry WO (eds) Neural Models of Plasticity: Experimental and Theoretical Approaches. Academic Press, San Diego, pp 240–265

    Chapter  Google Scholar 

  • Rolls ET (1989) The representation and storage of information in neural networks in the primate cerebral cortex and hippocampus. In: Durbin R, Miall C, Mitchison G (eds) The Computing Neuron. Addition-Wesley, Wokingham, pp 125–159

    Google Scholar 

  • Rolls ET (1989) Functions of neuronal networks in the hippocampus and cerebral cortex in memory. In: Cotterill R (ed) Models of Brain Function. Cambridge University Press, New York, pp 15–33

    Google Scholar 

  • Rolls ET (2016) Pattern separation, completion, and categorization in the hippocampus and neocortex. Neurobiol Learn Mem 129:4–28

    Article  PubMed  Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: A network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437–453

    Article  PubMed  Google Scholar 

  • Santoro A (2013) Reassessing pattern separation in the dentate gyrus. Front Behav Neurosci 7:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Savanthrapadian S, Meyer T, Elgueta C, Booker SA, Vida I, Bartos M (2014) Synaptic properties of SOM- and CCK-expressing cells in dentate gyrus interneuron networks. J Neurosci 34:8197–8209

    Article  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE (1991) Dentate hilar cells with dendrites in the molecular layer have lower thresholds for synaptic activation by perforant path than granule cells. J Neurosci 11:1660–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharfman HE (2018) Advances in understanding hilar mossy cells of the dentate gyrus. Cell Tissue Res 373:643–652

    Article  CAS  PubMed  Google Scholar 

  • Scharfman HE, Myers CE (2013) Hilar mossy cells of the dentate gyrus: A historical perspective. Front Neural Circuit 6:106

    Google Scholar 

  • Scharfman HE, Myers CE (2016) Corruption of the dentate gyrus by “dominant’’ granule cells: Implications for dentate gyrus function in health and disease. Neurobiol Learn Mem 129:69–82

    Article  PubMed  Google Scholar 

  • Schmidt B, Marrone DF, Markus EJ (2012) Disambiguating the similar: The dentate gyrus and pattern separation. Behav Brain Res 226:56–65

    Article  PubMed  Google Scholar 

  • Schmidt-Hieber C, Bischofberger J (2010) Fast sodium channel gating supports localized and efficient axonal action potential initiation. J Neurosci 30:10233–10242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt-Hieber C, Jonas P, Bischofberger J (2007) Subthreshold dendritic signal processing and coincidence detection in dentate gyrus granule cells. J Neurosci 27:8430–8441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29:171–182

    Article  PubMed  Google Scholar 

  • Sloviter RS, Lømo T (2012) Updating the lamellar hypothesis of hippocampal organization. Front Neural Circuit 6:102

    Google Scholar 

  • Squire L (1987) Memory and Brain. Oxford University Press, New York

    Google Scholar 

  • Su L, Chang CJ, Lynch N (2019) Spike-based winner-take-all computation: Fundamental limits and order-optimal circuits. Neural Comput 31:2523–2561

    Article  PubMed  Google Scholar 

  • Treves A, Rolls ET (1991) What determines the capacity of autoassociative memories in the brain? Network 2:371–397

    Article  Google Scholar 

  • Treves A, Rolls ET (1992) Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–199

    Article  CAS  PubMed  Google Scholar 

  • Treves A, Rolls ET (1994) Computational analysis of the role of the hippocampus in memory. Hippocampus 4:374–391

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of fscortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed  Google Scholar 

  • Wang Y, Zhang X, Xin Q, Hung W, Florman J, Huo J, Xu T, Xie Y, Alkema MJ, Zhen M, Wen Q (2020) Flexible motor sequence generation during stereotyped escape responses. eLife 9:e56942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Willshaw D, Buckingham J (1990) An assessment of Marr’s theory of the hippocampus as a temporary memory store. Phil Trans R Soc Lond B 329:205–215

    Article  CAS  Google Scholar 

  • Yassa MA, Stark CEL (2011) Pattern separation in the hippocampus. Trends Neurosci 34:515–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yim MY, Hanuschkin A, Wolfart J (2015) Intrinsic rescaling of granule cells restores pattern separation ability of a dentate gyrus network model during epileptic hyperexcitability. Hippocampus 25:297–308

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 20162007688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woochang Lim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SY., Lim, W. Disynaptic effect of hilar cells on pattern separation in a spiking neural network of hippocampal dentate gyrus. Cogn Neurodyn 16, 1427–1447 (2022). https://doi.org/10.1007/s11571-022-09797-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-022-09797-z

Keywords

Navigation