Skip to main content
Log in

The theoretical mechanism of Parkinson’s oscillation frequency bands: a computational model study

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Excessive synchronous oscillation activities appear in the brain is a key pathological feature of Parkinson’s disease, the mechanism of which is still unclear. Although some previous studies indicated that \(\beta\) oscillation (13–30 Hz) may directly originate in the network composed of the subthalamic nucleus (STN) and external globus pallidus (GPe) neurons, specific onset mechanisms of which are unclear, especially theoretical evidences in numerical simulation are still little. In this paper, we employ a STN–GPe mean-field model to explore the onset mechanism of Parkinson’s oscillation. In addition to \(\beta\) oscillation, we find that some other common oscillation frequency bands can appear in this network, such as the \(\alpha\) oscillation band (8–12 Hz), the \(\theta\) oscillation band (4–7 Hz) and \(\delta\) oscillation band (1–3 Hz). In addition to the coupling weight between the STN and GPe, the delay is also a critical factor to affect oscillatory activities, which can not be neglected compared to other parameters. Through simulation and analysis, we propose two possible theories may induce the system to transfer from the stable state to the oscillatory state in this model: (1). The oscillation activity can be induced when the firing activation level of the population increases to large enough; (2). In some special cases, the population may stay in the high firing rate stable state and the mean discharge rate of which is too large to induce oscillations, then oscillation activities may be induced as the MD decreases to moderate value. In most situations, the change trends of the MD and oscillation dominant frequency are contrary, which may be an important physiological phenomenon shown in this model. The delays and firing rates were obtained by simulating, which may be verified in the experiment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahn S, Zauber SE, Worth RM, Witt T, Rubchinsky LL (2015) Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson’s disease. Eur J Neurosci 42(5):2164–2171

    Article  PubMed  Google Scholar 

  • Ahn S, Zauber SE, Worth RM, Rubchinsky LL (2016) Synchronized beta-band oscillations in a model of the globus pallidus–subthalamic nucleus network under external input. Front Comput Neurosci 10:134

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakshi S, Chelliah V, Chen C et al (2019) Mathematical biology models of Parkinson’s disease. CPT: Pharmacomet Syst Pharmacol 8(2):77–86

    CAS  Google Scholar 

  • Başar E, Başar-Eroglu C, Karakaş S et al (2001) Gamma, alpha, delta, and theta oscillations govern cognitive processes. Int J Psychophysiol 39(2–3):241–248

    Article  PubMed  Google Scholar 

  • Bevan MD, Magill PJ, Terman D et al (2002) Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends Neurosci 25(10):525–531

    Article  CAS  PubMed  Google Scholar 

  • Bollimunta A, Mo J, Schroeder CE et al (2011) Neuronal mechanisms and attentional modulation of corticothalamic alpha oscillations. J Neurosci 31(13):4935–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown P, Oliviero A, Mazzone P et al (2001) Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci 21(3):1033–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caiola M, Holmes MH (2019) Model and analysis for the onset of Parkinsonian firing patterns in a simplified basal ganglia. Int J Neural Syst 29(01):1850021

    Article  PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AHV (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol. 8(5):464–474

    Article  CAS  PubMed  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. MIT Press, Cambridge

    Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53(2):530–543

    Article  CAS  PubMed  Google Scholar 

  • Dovzhenok A, Rubchinsky LL (2012) On the origin of tremor in Parkinson’s disease. PLoS ONE 7(7):e41598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fountas Z, Shanahan M (2017) The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS ONE 12(12):e0189109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frank MJ (2006) Hold your horses: a dynamic computational role for the subthalamic nucleus in decision making. Neural Netw 19(8):1120–1136

    Article  PubMed  Google Scholar 

  • Fujimoto K, Kita H (1993) Response characteristics of subthalamic neurons to the stimulation of the sensorimotor cortex in the rat. Brain Res 609(1–2):185–192

    Article  CAS  PubMed  Google Scholar 

  • Gillies A, Willshaw D, Li Z et al (2002) Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proc R Soc B 269(1491):545–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Güntekin B, Hanoǧlu L, Güner D et al (2018) Cognitive impairment in Parkinson’s disease is reflected with gradual decrease of EEG delta responses during auditory discrimination. Front Psychol 9:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallworth NE, Wilson CJ, Bevan MD (2003) Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J Neurosci 23(20):7525–7542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamani C, Saint-Cyr JA, Fraser J et al (2004) The subthalamic nucleus in the context of movement disorders. Brain 127(1):4–20

    Article  PubMed  Google Scholar 

  • Hammond C, Bergman H, Brown P (2007) Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends Neurosci. 30(7):357–364

    Article  CAS  PubMed  Google Scholar 

  • Holgado AJN, Terry JR, Bogacz R (2010) Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. J Neurosci 30(37):12340–12352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries MD, Obeso JA, Dreyer JK (2018) Insights into Parkinson’s disease from computational models of the basal ganglia. J Neurol Neurosurg Psychiatry 89(11):1181–1188

    Article  PubMed  Google Scholar 

  • Khabarova E, Denisova N, Dmitriev A et al (2018) Deep brain stimulation of the subthalamic nucleus in patients with Parkinson disease with prior pallidotomy or thalamotomy. Brain Sci 8(4):66

    Article  PubMed Central  Google Scholar 

  • Kita H (2007) Globus pallidus external segment. Prog Brain Res 160:111–133

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Chang HT, Kitai ST (1983) Pallidal inputs to subthalamus: intracellular analysis. Brain Res 264(2):255–265

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Kitai ST (1991) Intracellular study of rat globus pallidus neurons: membrane properties and responses to neostriatal, subthalamic and nigral stimulation. Brain Res 564(2):296–305

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Nambu A, Kaneda K et al (2004) Role of ionotropic glutamatergic and GABAergic inputs on the firing activity of neurons in the external pallidum in awake monkeys. J. Neurophysiol 92(5):3069–3084

    Article  CAS  PubMed  Google Scholar 

  • Kita H, Tachibana Y, Nambu A et al (2005) Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci 25(38):8611–8619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195

    Article  CAS  PubMed  Google Scholar 

  • Klostermann F, Nikulin VV, Kuhn AA et al (2007) Task-related differential dynamics of EEG alpha- and beta-band synchronization in cortico-basal motor structures. Eur J Neurosci 25(5):1604–1615

    Article  PubMed  Google Scholar 

  • Kumar A, Cardanobile S, Rotter S et al (2011) The role of inhibition in generating and controlling Parkinson’s disease oscillations in the basal ganglia. Front Syst Neurosci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Lebedev MA, Wise SP (2000) Oscillations in the premotor cortex: single-unit activity from awake, behaving monkeys. Exp Brain Res 130(2):195–215

    Article  CAS  PubMed  Google Scholar 

  • Leblois A, Boraud T, Meissner W et al (2006) Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. J Neurosci 26(13):3567–3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Zhu Y, Liu F et al (2017) Neural mass models describing possible origin of the excessive beta oscillations correlated with Parkinsonian state. Neural Netw 88:65–73

    Article  PubMed  Google Scholar 

  • Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and \(\alpha\)-synuclein. Nat Rev Neurosci 3(12):932

    Article  CAS  PubMed  Google Scholar 

  • Mallet N, Pogosyan A, Márton LF, et al (2008a) Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. J Neurosci 28(52):14245–14258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallet N, Pogosyan A, Sharott A et al (2008b) Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28(18):4795–4806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mink JW (1996) The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 50(4):381–425

    Article  CAS  PubMed  Google Scholar 

  • Muddapu VRN, Mandali A, Chakravarthy SV et al (2019) A computational model of loss of dopaminergic cells in Parkinsons disease due to glutamate-induced excitotoxicity. Front Neural Circuits 13:11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakanishi H, Kita H, Kitai ST (1987) Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: electrical membrane properties and response characteristics to subthalamic stimulation. Brain Res 437(1):45–55

    Article  CAS  PubMed  Google Scholar 

  • Nevado-Holgado AJ, Mallet N, Magill PJ et al (2014) Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. J Physiol 592(7):1429–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeso JA, Rodrguez-Oroz MC, Rodrguez M et al (2002) The basal ganglia and disorders of movement: pathophysiological mechanisms. Physiology 17(2):51–55

    Article  Google Scholar 

  • Ori H, Marder E, Marom S (2018) Cellular function given parametric variation in the Hodgkin and Huxley model of excitability. Proc Natl Acad Sci 115(35):E8211–E8218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswal A, Brown P, Litvak V (2013) Synchronized neural oscillations and the pathophysiology of Parkinson’s disease. Curr Opin Neurol 26(6):662–670

    Article  PubMed  Google Scholar 

  • Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Res Rev 20(1):128–154

    Article  CAS  PubMed  Google Scholar 

  • Park C, Rubchinsky LL (2011) Intermittent synchronization in a network of bursting neurons. Chaos 21(3):033125

    Article  PubMed  PubMed Central  Google Scholar 

  • Park C, Rubchinsky LL (2012) Potential mechanisms for imperfect synchronization in Parkinsonian basal ganglia. PLoS ONE 7(12):e51530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park C, Worth RM, Rubchinsky LL et al (2011) Neural dynamics in Parkinsonian brain: the boundary between synchronized and nonsynchronized dynamics. Phys Rev E 83(4):042901

    Article  CAS  Google Scholar 

  • Pavlides A, Hogan SJ, Bogacz R (2015) Computational models describing possible mechanisms for generation of excessive beta oscillations in Parkinson’s disease. PLoS Comput Biol 11(12):e1004609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pavlides A, John Hogan S, Bogacz R (2012) Improved conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. Eur J Neurosci 36(2):2229–2239

    Article  PubMed  Google Scholar 

  • Paz JT, Deniau JM, Charpier S (2005) Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges. J Neurosci 25(8):2092–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plenz D, Kital ST (1999) A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400(6745):677

    Article  CAS  PubMed  Google Scholar 

  • Rubchinsky LL, Park C, Worth RM (2012) Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn 68(3):329

    Article  PubMed  Google Scholar 

  • Rubin JE (2017) Computational models of basal ganglia dysfunction: the dynamics is in the details. Curr Opin Neurobiol 46:127–135

    Article  CAS  PubMed  Google Scholar 

  • Sancristóbal B, Tastekin I, Dierssen M (2018) Computational models: how do they help to understand neurologic diseases? Mol Genet Stat Tech Behav Neural Res. https://doi.org/10.1016/B978-0-12-804078-2.00005-2

    Article  Google Scholar 

  • Schmiedt C, Meistrowitz A, Schwendemann G et al (2005) Theta and alpha oscillations reflect differences in memory strategy and visual discrimination performance in patients with Parkinson’s disease. Neurosci Lett 388(3):138–143

    Article  CAS  PubMed  Google Scholar 

  • Schultz W, Romo R (1988) Neuronal activity in the monkey striatum during the initiation of movements. Exp Brain Res 71(2):431–436

    Article  CAS  PubMed  Google Scholar 

  • Shampine LF, Thompson S, Kierzenka J (2000) Solving delay differential equations with dde23. http://www.runet.edu/~thompson/webddes/tutorial.pdf

  • Shampine LF, Thompson S (2001) Solving DDEs in MATLAB. Appl Numer Math 37(4):441–458

    Article  Google Scholar 

  • Shink E, Bevan MD, Bolam JP et al (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73(2):335–357

    Article  CAS  PubMed  Google Scholar 

  • Shouno O, Tachibana Y, Nambu A et al (2017) Computational model of recurrent subthalamo-pallidal circuit for generation of Parkinsonian oscillations. Front Neuroanat 11:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh A, Richardson SP, Narayanan N et al (2018) Mid-frontal theta activity is diminished during cognitive control in Parkinson’s disease. Neuropsychologia 117:113–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Szlufik S, Kloda M, Friedman A et al (2018b) The neuromodulatory impact of subthalamic nucleus deep brain stimulation on gait and postural instability in Parkinson’s disease patients: a prospective case controlled study. Front Neurol 9:906

    Article  PubMed  PubMed Central  Google Scholar 

  • Szlufik S, Przybyszewski A, Dutkiewicz J et al (2018a) UPDRS III and reflexive saccades latency indicate that STN DBS has therapeutic neuromodulatory effects in Parkinson’s disease. Parkinsonism Relat D 46:e87–e88

    Article  Google Scholar 

  • Terman D, Rubin JE, Yew AC et al (2002) Activity patterns in a model for the subthalamopallidal network of the basal ganglia. J Neurosci 22(7):2963–2976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Albada SJ, Gray RT, Drysdale PM et al (2009) Mean-field modeling of the basal ganglia-thalamocortical system. II: dynamics of Parkinsonian oscillations. J Theor Biol 257(4):664–688

    Article  PubMed  Google Scholar 

  • van Albada SJ, Robinson PA (2009) Mean-field modeling of the basal ganglia-thalamocortical system. I: firing rates in healthy and Parkinsonian states. J Theor Biol 257(4):642–663

    Article  PubMed  Google Scholar 

  • Van Dijk H, van Tooren-Hoogenboom N, Sudmeyer M et al (2016) EP 107. The role of alpha oscillations in visual attention and its dysfunction in Parkinson’s disease. Clin Neurophysiol 127(9):e286–e287

    Article  Google Scholar 

  • Vogels TP, Rajan K, Abbott LF (2005) Neural network dynamics. Annu Rev Neurosci 28:357–376

    Article  CAS  PubMed  Google Scholar 

  • Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingeier B, Tcheng T, Koop MM et al (2006) Intra-operative STN DBS attenuates the prominent beta rhythm in the STN in Parkinson’s disease. Exp Neurol 197(1):244–251

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The National Science Foundation of China (Grant No. 11602092); the Natural Science Foundation of Hubei Province (Grant No. 2018CFB628); the China Postdoctoral Science Foundation (No. 2018M632184).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Hu or Dingjiang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 1.

Table 1 The source and value of parameters employed in simulations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Xu, M., Wang, Z. et al. The theoretical mechanism of Parkinson’s oscillation frequency bands: a computational model study. Cogn Neurodyn 15, 721–731 (2021). https://doi.org/10.1007/s11571-020-09651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-020-09651-0

Keywords

Navigation